Preliminary Metabolomic Investigation of Saline-Stressed *Portulaca oleracea* using 1H NMR

Paulina J. Haight*, John S. Harwood*, & Bryan A. Hanson*

*Dept. of Chemistry & Biochemistry, DePauw University, Greencastle, Indiana USA
*Interdepartmental NMR Facility, Purdue University, West Lafayette, Indiana USA

Effect of Salinity on Fitness

The effect of salinity on reproductive fitness was demonstrated in several ways; here we show that flower production decreases notably under salinity stress.

Principal Components Analysis

Principal components analysis on the unscaled spectra also shows clear separation into the groups identified by HCA. In particular, each genotype in the high salt treatment moves in a different direction along PC2.

Peaks of Interest, cont’’

Another valuable approach to finding significant peaks is the S-plot, shown below. The peaks in the extreme corners, where a high correlation suggests a reliable marker, and high covariance means good signal-to-noise, are of greatest interest.

Compounds & Pathways of Interest

In addition to identifying the peaks that appear to be the most important markers generally, we need to identify which compounds correspond to these peaks. Nicholson’s STOCSY (Statistical Total Correlation Spectroscopy) is an important tool in this regard. The figure below shows the STOCSY plot for the busiest region of the spectrum. This plot is interpreted much as any 2D NMR plot is interpreted. Strong cross peaks are indicative of peaks from the same compound and can be followed to make a tentative identification. Somewhat less strong cross peaks are expected from different compounds which belong to the same metabolic pathway and are up or down-regulated in a coordinated manner.

Next Steps

We are currently studying the STOCSY loadings and S-plot results to identify which specific compounds are involved in the response to saline stress in *Portulaca*.

References

Acknowledgements

We thank DePauw University for financial support to acquire NMR spectra, and Prof. Dana Dudie for sage advice.