Supplement for First Exam

Equations Provided to You

- $c=\lambda \nu$
- $E=h \nu=\frac{h c}{\lambda}$
- $\frac{1}{\lambda}=\left(1.09737 \times 10^{-2} \mathrm{~nm}^{-1}\right) \times\left\{\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right\}$
- $K E=h \nu-B E$
- $E \propto \frac{q_{1} \times q_{2}}{d}$
- $I E \propto \frac{Z \times e}{r}$
- $Z_{\text {eff }}=Z-S$
- $A V E E=\frac{x \times I E_{s}+y \times I E_{p}+z \times I E_{d}}{x+y+z}$ (valence shell electrons only)

Constants Provided to You

- $c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- $h=6.626 \times 10^{-34} \mathrm{Js}$
- $N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

Slater's Rules (for elements in first five rows of periodic table)

1. write the electron configuration in groups using this order

$$
(1 s) \quad(2 s, 2 p) \quad(3 s, 3 p) \quad(3 d) \quad(4 s, 4 p) \quad(4 d) \quad(5 s, 5 p)
$$

2. identify the group in which the electron of interest lies and ignore all electrons to the right of this group
3. if the electron of interest is an s or p electron, then

- each additional electron in its group ($n s, n p$) contributes 0.35 to S
- each electron in the $n-1$ shell contributes 0.85 to S
- each electron further to the left contributes 1.00 to S

4. if the electron of interest is a d electron, then

- each additional electron in its $(n d)$ group contributes 0.35 to S
- each electron further to the left contributes 1.00 to S

