Model Lewis Structures	 Strengths structures are easy to draw helps predict connectivity of atoms predicts bond orders distinguishes between bonding and non-bonding electrons 	 Weaknesses does not predict geometry does not explain how bonds form does not explain isomers does not explain what non-bonding electrons are 	 When to Use typically first approach when considering bonding essential first step for VSEPR
VSEPR	 predicts three-dimensional shape explains polarity explains existence of isomers 	 does not explain resonance does not explain how bonds form does not explain why double bonds are different from single bonds 	• method of choice when predicting geometry
Valence Bond	 explains bonding as am interaction between atomic (hybrid) orbitals explains why double and triple bonds are different from single bonds 	 relies on atomic (hybrid) orbitals, which are properties of free atoms, not molecules or polyatomic ions cannot explain why some molecules are paramagnetic and others are di- amagnetic 	 used primarily to explain difference between σ and π bonding hybrid orbitals are used to indicated geometry; for example, sp³ hybridiza- tion indicates tetrahedral geometry
Molecular Orbital	 explains why some molecules are paramagnetic and why others are diamagnetic explains bonding in terms of molecular, not atomic orbitals gives best description of the distribution of valence electrons in molecules 	• complex calculations require approx- imations for all but the simplest sys- tems	 used to explain bond orders in simple diatomic molecules and ions used to explain magnetic behavior of diatomic molecules and ions used to explain color of metal-ligand complexes of transition metals

Bonding Models for Inorganic Molecules and Ions