Three Ways to Prepare a Buffer

Suppose you are asked to prepare 500 mL of a $\text{HCO}_3^{-}/\text{CO}_3^{2-}$ buffer subject to the following conditions: the buffer must have a pH of 9.87 and the combined concentrations of HCO_3^{-} and CO_3^{2-} must be 0.200 M. How might you prepare this buffer?

We begin by determining the relative amount of weak base (CO_3^{2-}) and weak acid (HCO_3^{-}) needed to give the desired pH; thus, using the Henderson-Hasselbalch equation we find that

$$\begin{split} \mathbf{p}\mathbf{H} &= 9.87 = \mathbf{p}K_{\mathbf{a}} + \log\frac{[\mathbf{CO_3}^{2-}]}{[\mathbf{HCO_3}^{-}]} = 10.33 + \log\frac{[\mathbf{CO_3}^{2-}]}{[\mathbf{HCO_3}^{-}]} \\ &\frac{[\mathbf{CO_3}^{2-}]}{[\mathbf{HCO_3}^{-}]} = 0.3467 \end{split}$$

We then calculate the total moles of CO_3^{2-} and HCO_3^{-} that we need to prepare the buffer

mol
$$\text{HCO}_3^- + \text{mol CO}_3^{2-} = \frac{0.200 \text{ mol}}{\text{L}} \times 0.500 \text{ L} = 0.100 \text{ mol}$$

Next, we calculate the exact moles of CO_3^{2-} and HCO_3^{-} needed. Letting X be the moles of CO_3^{2-} , we know that the moles of HCO_3^{-} are

$$mol HCO_3^{-} = 0.100 mol - X$$

Substituting back gives

$$\frac{[\text{CO}_3^{2^-}]}{[\text{HCO}_3^{-}]} = \frac{X}{0.100 - X} = 0.3467$$
$$X = 0.02574 \text{ mol CO}_3^{2^-}$$

 $0.100 - X = 0.07426 \text{ mol HCO}_3^{-1}$

Now that we know how many moles of $CO_3^{2^-}$ and HCO_3^- we need, we can determine the amounts of each reagent to use. We have three choices: (i) use solid Na₂CO₃ and solid Na_HCO₃; (ii) use solid Na_HCO₃ and convert some of it to $CO_3^{2^-}$ by adding a strong base; or (iii) use solid Na₂CO₃ and convert some of it to HCO_3^- by adding a strong astrong base; or (iii) use solid Na₂CO₃ and convert some of it to HCO_3^- by adding a strong base; or (iii) use solid Na₂CO₃ and convert some of it to HCO_3^- by adding a strong base; or (iii) use solid Na₂CO₃ and convert some of it to HCO_3^- by adding a strong base; or (iii) use solid Na₂CO₃ and convert some of it to HCO_3^- by adding a strong base.

Using Na₂CO₃ and NaHCO₃

The moles of Na_2CO_3 and $NaHCO_3$ needed are the moles of CO_3^{2-} and HCO_3^{-} calculated above; thus

$$0.02574 \text{ mol Na}_2\text{CO}_3 \times \frac{105.989 \text{ g}}{\text{mol}} = 2.73 \text{ g Na}_2\text{CO}_3$$

 $0.07426 \text{ molNaHCO}_3 \times \frac{84.0059 \text{ g}}{\text{mol}} = 6.24 \text{ g NaHCO}_3$

To prepare the buffer, therefore, we add these amounts of the solid reagents to a 500-mL volumetric flask and dilute to volume.

Using NaHCO₃ and NaOH

In this approach we begin by weighing out an amount of NaHCO₃ equivalent to the total moles of HCO_3^{-1} and CO_3^{2-} needed; thus, we begin with 0.100 moles of NaHCO₃, or

$$0.100~{\rm mol}~{\rm NaHCO_3}\times \frac{84.0059~{\rm g}}{{\rm mol}} = 8.40~{\rm g}~{\rm NaHCO_3}$$

Next, we add NaOH, converting 0.02574 moles of HCO_3^- to CO_3^{2-} as shown by the following reaction

 $\mathrm{HCO}_{3}^{-}(aq) + \mathrm{OH}^{-}(aq) \longrightarrow \mathrm{CO}_{3}^{2-}(aq) + \mathrm{H}_{2}\mathrm{O}(l)$

Thus, we need 0.02574 moles of NaOH, or

$$0.02574~{\rm mol}~{\rm NaOH} \times \frac{1{\rm L}}{6~{\rm mol}} \times \frac{1000{\rm mL}}{{\rm L}} = 4.29~{\rm mL}~{\rm NaOH}$$

To prepare the buffer we add 8.40 g of NaHCO₃ to a 500-mL volumetric flask and dissolve it with some water. We then add 4.29 mL of 6 M NaOH and dilute to volume.

Using Na₂CO₃ and HCl

In this approach we begin by weighing out an amount of Na_2CO_3 equivalent to the total moles of HCO_3^- and CO_3^{2-} needed; thus we begin with 0.100 moles of Na_2CO_3 , or

$$0.100 \text{ mol } \text{Na}_2\text{CO}_3 \times \frac{105.998 \text{ g}}{\text{mol}} = 10.60 \text{ g } \text{Na}_2\text{CO}_3$$

Next, we add HCl, converting 0.07426 moles of CO_3^{2-} to HCO_3^{-} as shown by the following reaction

$$\mathrm{CO}_{3}^{2-}(aq) + \mathrm{H}_{3}\mathrm{O}^{+}(aq) \longrightarrow \mathrm{HCO}_{3}^{-}(aq) + \mathrm{H}_{2}\mathrm{O}(l)$$

Thus, we need 0.07426 moles of HCl, or

$$0.07426 \text{ mol HCl} \times \frac{1\text{L}}{6 \text{ mol}} \times \frac{1000 \text{ mL}}{\text{L}} = 12.38 \text{ mL HCl}$$

To prepare the buffer we add 10.60 g of Na_2CO_3 to a 500-mL volumetric flask and dissolve it with some water. We then add 12.38 mL of 6 M HCl and dilute to volume.

A Final Comment of Preparing Buffers

For reasons we will discuss later, a buffer prepared following one of these approaches probably will not produce a solution with a pH that matches exactly the desired pH. When we prepare a buffer in the laboratory it often is necessary to adjust the buffer's pH level to the desired value by adding small amounts of either a strong acid or a strong base while monitoring the pH with a pH electrode.