Rules for Assigning Oxidation States

- 1. The oxidation state of an atom in any neutral monatomic form is zero; for example, the oxidation states for the following are all 0: Cu, Ag, N₂, and O₃.
- 2. The oxidation state of a monatomic cation or anion is the same as the ion's charge; thus, Na⁺ has a +1 oxidation state and Cl⁻ has a -1 oxidation state
- 3. The algebraic sum of oxidation states for the elements in a polyatomic compound or ion must equal the compound's or ion's total charge; for example:
 - for CH_4 the oxidation state of $C \times 4 + oxidation$ state of H is 0
 - for NO_3^- , the oxidation state of $N \times 3 + oxidation$ state of O is -1
- 4. When more than one element is present, the more electronegative element maintains the negative oxidation state; thus:
 - in CH_4 , carbon has a negative oxidation state
 - in NO_3^- , oxygen has a negative oxidation state
- 5. There are a few elements that have only one or two common non-zero oxidation states; these are:
 - hydrogen is always +1 when bound to a more electronegative element, such as in HCl or CH₄, and -1 when bound to a less electronegative element, such as in NaH
 - alkali metals are always +1
 - alkaline earths are always +2
 - oxygen is usually -2, but it is -1 in peroxide, $O_2^{2^-}$, and it is $-\frac{1}{2}$ in superoxide, O_2^{-1}
- 6. Other oxidation states are determined by applying these rules; thus:
 - the P in PO_4^{3-} is +5
 - the P in PCl_3 is +3
 - the P in PH_3 is -3