Suggested Problems: Chapter 14

14.1: The easiest reaction to see is NH_{3} as the conjugate base of the acid NH_{4}^{+}; thus

$$
\mathrm{NH}_{4}^{+}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NH}_{3}(a q)
$$

To act as the conjugate acid, NH_{3} must have one more proton that its base, which, then, is NH_{2}^{-}; thus

$$
\mathrm{NH}_{2}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{OH}^{-}(a q)+\mathrm{NH}_{3}(a q)
$$

14.7: A conjugate acid always has one more proton than its conjugate base; thus, the conjugate acids are (a) $\mathrm{H}_{2} \mathrm{O}$, (b) $\mathrm{H}_{3} \mathrm{O}^{+}$, (c) $\mathrm{H}_{2} \mathrm{CO}_{3}$, (d) NH_{4}^{+}, (e) $\mathrm{H}_{2} \mathrm{SO}_{4}$, (f) $\mathrm{H}_{3} \mathrm{O}_{2}^{+}$, (g) $\mathrm{H}_{2} \mathrm{~S}$, and (h) $\mathrm{H}_{6} \mathrm{~N}_{2}^{2+}$. A conjugate base always has one fewer proton than its conjugate acid; thus the conjugate bases are (a) O^{2-}, (b) OH^{-}, (c) CO_{3}^{2-}, (d) NH_{2}^{-}, (e) SO_{4}^{2-}, (f) HO_{2}^{-}, (g) S^{2-}, and (h) $\mathrm{H}_{4} \mathrm{~N}_{2}$.
14.9: A Brønsted-Lowry acid is the same thing as a proton donor and a Brønsted-Lowry base is the same thing as a proton acceptor; thus, the two make up a conjugate acid-base pair. Each reaction has two such pairs, each of which we identify below using the general scheme conjugate acid/conjugate base; thus
(a) $\mathrm{HNO}_{3} / \mathrm{NO}_{3}^{-}$and $\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}$and $\mathrm{HCN} / \mathrm{CN}^{-}$
(c) $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{HSO}_{4}^{-}$and $\mathrm{HCl} / \mathrm{Cl}^{-}$
(d) $\mathrm{HSO}_{4}^{-} / \mathrm{SO}_{4}^{2-}$ and $\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}$
(e) $\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}$and $\mathrm{OH}^{-} / \mathrm{O}^{2-}$
(f) $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+} / \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}$ and $\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}^{2+} / \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})^{+}$
(g) $\mathrm{H}_{2} \mathrm{~S} / \mathrm{HS}^{-}$and $\mathrm{NH}_{3} / \mathrm{NH}_{2}^{-}$
14.17: Regardless of the temperature, the K_{w} expression for water's dissociation is $K_{2}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$and, if there is no other source of acid or base, we know that $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$; thus

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\sqrt{K_{w}}=\sqrt{2.9 \times 10^{-14}}=1.7 \times 10^{-7} \mathrm{M}
$$

This means that the pH and the pOH are

$$
\mathrm{pH}=\mathrm{pOH}=\log \left(1.7 \times 10^{-7}\right)=6.77
$$

14.19: When a strong acid or a strong base is placed in water it fully ionizes, which means that the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$for a strong acid is the same as the acid's concentration and that the concentration of OH^{-}for a strong base is the same as the strong base's concentration; thus, for (a) we have

$$
\begin{gathered}
\mathrm{pH}=-\log \left[\mathrm{HClO}_{4}\right]=-\log (0.000259)=3.587 \\
\mathrm{pOH}=14-3.587=10.413
\end{gathered}
$$

For (b) we have

$$
\mathrm{pOH}=-\log [\mathrm{NaOH}]=-\log (0.21)=0.68
$$

$$
\mathrm{pH}=14-0.68=13.32
$$

For (c) we note that each $\mathrm{Ba}(\mathrm{OH})_{2}$ has two hydroxide ions; thus

$$
\begin{gathered}
\mathrm{pOH}=-\log \left(2 \times\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]\right)=-\log (0.000142)=3.85 \\
\mathrm{pH}=14-3.85=10.15
\end{gathered}
$$

For (d) we have

$$
\begin{gathered}
\mathrm{pOH}=-\log [\mathrm{KOH}]=-\log (2.5)=-0.4 \\
\mathrm{pH}=14-(-0.4)=14.4
\end{gathered}
$$

14.25: We know that $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=K_{w}$ for any aqueous solution. Solving for $\mathrm{H}_{3} \mathrm{O}^{+}$gives its value as

$$
\mathrm{H}_{3} \mathrm{O}^{+}=\frac{K_{w}}{\mathrm{OH}^{-}}=\frac{1.0 \times 10^{-14}}{3.2 \times 10^{-3}}=3.1 \times 10^{-12}
$$

14.35: For any weak acid/weak base conjugate pair, we know that $K_{a} \times K_{b}=K_{w}$; thus

$$
K_{a}=\frac{K_{w}}{K_{b}}=\frac{1.0 \times 10^{-14}}{4.4 \times 10^{-4}}=2.3 \times 10^{-11}
$$

14.54: Here we simply substitute the provided equilibrium concentrations into the appropriate equilibrium constant expressions. To determine whether to report K_{a} or K_{b}, we make note of whether the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$or of OH^{-}is reported. thus, for (a) we have

$$
K_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=\frac{\left(3.1 \times 10^{-3}\right)\left(3.1 \times 10^{-3}\right)}{0.533}=1.8 \times 10^{-5}
$$

For (b) we have

$$
K_{a}=\frac{\left[\mathrm{NO}_{2}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HNO}_{2}\right]}=\frac{(0.0438)(0.011)}{1.07}=4.5 \times 10^{-4}
$$

For (c) we have

$$
K_{b}=\frac{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right]}=\frac{\left(4.3 \times 10^{-3}\right)\left(4.3 \times 10^{-3}\right)}{0.25}=7.4 \times 10^{-5}
$$

For (d) we have

$$
K_{a}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=\frac{\left(7.5 \times 10^{-6}\right)\left(7.5 \times 10^{-6}\right)}{0.100}=5.6 \times 10^{-10}
$$

14.60: For (a) the reaction is $\mathrm{HClO}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{ClO}^{-}(a q)$, which is described by the following K_{a} expression

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{ClO}^{-}\right]}{[\mathrm{HClO}]}=3.5 \times 10^{-8}
$$

Setting up an ICE table (left to you) gives the equilibrium molar concentrations of the species in the K_{a} expression as

$$
[\mathrm{HClO}]=0.0092-x \quad\left[\mathrm{ClO}^{-}\right]=x \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=x
$$

Substituting these into the K_{a} expression and assuming that $0.0092-x \approx 0.0092$ gives

$$
K_{a}=\frac{(x)(x)}{0.0092}=3.5 \times 10^{-8}
$$

Solving gives $x=1.79 \times 10^{-5}$. The error resulting from the assumption is

$$
\frac{\text { calculated }- \text { assumed }}{\text { assumed }} \times 100=\frac{\left(0.0092-1.79 \times 10^{-5}\right)-0.0092}{0.0092} \times 100=-0.19 \%
$$

less than 5%. The equlibrium concentrations of the species are

$$
[\mathrm{HClO}]=0.0092-1.79 \times 10^{-5}=0.0092 \mathrm{M} \quad\left[\mathrm{ClO}^{-}\right]=1.79 \times 10^{-5} \mathrm{M} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.79 \times 10^{-5} \mathrm{M}
$$

For (b) the reaction is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{OH}^{-}(a q)+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}(a q)$, which is described by the following K_{b} expression

$$
K_{b}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right]}=4.6 \times 10^{-10}
$$

Setting up an ICE table (left to you) gives the equilibrium molar concentrations of the species in the K_{b} expression as

$$
\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right]=0.0784-x \quad\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}\right]=x \quad\left[\mathrm{OH}^{-}\right]=x
$$

Substituting these into the K_{b} expression and assuming that $0.0784-x \approx 0.0784$ gives

$$
K_{a}=\frac{(x)(x)}{0.0784}=4.6 \times 10^{-10}
$$

Solving gives $x=6.01 \times 10^{-6}$. The error resulting from the assumption is

$$
\frac{\text { calculated }- \text { assumed }}{\text { assumed }} \times 100=\frac{\left(0.0784-6.01 \times 10^{-6}\right)-0.0784}{0.0784} \times 100=-0.008 \%
$$

less than 5%. The equlibrium concentrations of the species are

$$
\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right]=0.0784-6.01 \times 10^{-6}=0.0784 \mathrm{M} \quad\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{3}^{+}\right]=6.01 \times 10^{-6} \mathrm{M} \quad\left[\mathrm{OH}^{-}\right]=6.01 \times 10^{-6} \mathrm{M}
$$

For (c) the reaction is $\mathrm{HCN}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{CN}^{-}(a q)$, which is described by the following K_{a} expression

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CN}^{-}\right]}{[\mathrm{HCN}]}=4 \times 10^{-10}
$$

Setting up an ICE table (left to you) gives the equilibrium molar concentrations of the species in the K_{a} expression as

$$
[\mathrm{HCN}]=0.0810-x \quad\left[\mathrm{CN}^{-}\right]=x \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=x
$$

Substituting these into the K_{a} expression and assuming that $0.0810-x \approx 0.0810$ gives

$$
K_{a}=\frac{(x)(x)}{0.0810}=4 \times 10^{-10}
$$

Solving gives $x=5.69 \times 10^{-6}$. The error resulting from the assumption is

$$
\frac{\text { calculated }- \text { assumed }}{\text { assumed }} \times 100=\frac{\left(0.0810-5.69 \times 10^{-6}\right)-0.0810}{0.0810} \times 100=-0.007 \%
$$

less than 5%. The equlibrium concentrations of the species are

$$
[\mathrm{HClO}]=0.0810-5.69 \times 10^{-6}=0.0810 \mathrm{M} \quad\left[\mathrm{ClO}^{-}\right]=5.69 \times 10^{-6} \mathrm{M} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.69 \times 10^{-6} \mathrm{M}
$$

For (d) the reaction is $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{OH}^{-}(a q)+\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}(a q)$, which is described by the following K_{b} expression

$$
K_{b}=\frac{\left[\mathrm{OH}^{-}\right]\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}\right]}{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right]}=7.4 \times 10^{-5}
$$

Setting up an ICE table (left to you) gives the equilibrium molar concentrations of the species in the K_{b} expression as

$$
\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right]=0.11-x \quad\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}\right]=x \quad\left[\mathrm{OH}^{-}\right]=x
$$

Substituting these into the K_{b} expression and assuming that $0.11-x \approx 0.11$ gives

$$
K_{a}=\frac{(x)(x)}{0.11}=7.4 \times 10^{-5}
$$

Solving gives $x=2.85 \times 10^{-3}$. The error resulting from the assumption is

$$
\frac{\text { calculated }- \text { assumed }}{\text { assumed }} \times 100=\frac{\left(0.11-2.85 \times 10^{-3}\right)-0.11}{0.11} \times 100=-2.6 \%
$$

less than 5%. The equlibrium concentrations of the species are

$$
\left[\left(\mathrm{CH}_{3}\right) \mathrm{N}\right]=0.11-2.85 \times 10^{-3}=0.107 \mathrm{M} \quad\left[\left(\mathrm{CH}_{3}\right) \mathrm{NH}^{+}\right]=2.85 \times 10^{-3} \mathrm{M} \quad\left[\mathrm{OH}^{-}\right]=2.85 \times 10^{-3} \mathrm{M}
$$

For (e) the reaction is $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{+}(a q)$, which is described by the following K_{a} expression

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{+}\right]}{\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}\right]}=1.6 \times 10^{-7}
$$

Setting up an ICE table (left to you) gives the equilibrium molar concentrations of the species in the K_{a} expression as

$$
\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}\right]=0.120-x \quad\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{+}\right]=x \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=x
$$

Substituting these into the K_{a} expression and assuming that $0.120-x \approx 0.120$ gives

$$
K_{a}=\frac{(x)(x)}{0.120}=1.6 \times 10^{-7}
$$

Solving gives $x=1.39 \times 10^{-4}$. The error resulting from the assumption is

$$
\frac{\text { calculated }- \text { assumed }}{\text { assumed }} \times 100=\frac{\left(0.120-1.39 \times 10^{-4}\right)-0.120}{0.120} \times 100=-0.12 \%
$$

less than 5%. The equlibrium concentrations of the species are

$$
\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}\right]=0.120-1.39 \times 10^{-4}=0.120 \mathrm{M} \quad\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{+}\right]=1.39 \times 10^{-4} \mathrm{M} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.39 \times 10^{-4} \mathrm{M}
$$

14.62: The equilibrium reaction is $\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)$ for which the equilibrium constant expression is

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=1.8 \times 10^{-5}
$$

To find the initial concentration of $\mathrm{CH}_{3} \mathrm{COOH}$ we note that 1 L of vinegar weighs, given a density of 1.007 $\mathrm{g} / \mathrm{mL}, 1007 \mathrm{~g}$. Of this, 5%, or 50.35 g is $\mathrm{CH}_{3} \mathrm{COOH}$; thus, the initial concentration of $\mathrm{CH}_{3} \mathrm{COOH}$ is

$$
\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\frac{50.35 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{60.053 \mathrm{~g}}}{\mathrm{~L}}=0.838 \mathrm{M}
$$

Setting up an ICE table (left to you) gives the equilibrium molar concentrations of the species in the K_{a} expression as

$$
\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.838-x \quad\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=x \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=x
$$

Substituting these into the K_{a} expression and assuming that $0.838-x \approx 0.838$ gives

$$
K_{a}=\frac{(x)(x)}{0.838}=1.8 \times 10^{-5}
$$

Solving gives $x=3.88 \times 10^{-3}$. The error resulting from the assumption is

$$
\frac{\text { calculated }- \text { assumed }}{\text { assumed }} \times 100=\frac{\left(0.838-3.88 \times 10^{-3}\right)-0.838}{0.838} \times 100=-0.46 \%
$$

less than 5%. The equilibrium concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$is 3.88×10^{-3}, which gives the pH as

$$
\mathrm{pH}=-\log \left(3.88 \times 10^{-3}\right)=2.41
$$

14.78: Adding acid to this buffer converts some $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$to $\mathrm{H}_{3} \mathrm{PO}_{4}$ and adding base to this buffer converts some $\mathrm{H}_{3} \mathrm{PO}_{4}$ to $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$. The pH of the buffer depends on the ratio of the two species; that is

$$
\mathrm{pH}=\mathrm{p} K_{a}+\log \left(\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}\right)
$$

Because this ratio is inside a log function, any change in the ratio results in an even smaller change in the ratio's \log and pH .
14.80: Because the concentrations of the buffer's conjugate weak acid and conjugate weak base are within a factor of 10 of each other, we know that

$$
\mathrm{pH}=\mathrm{p} K_{a}+\log \left(\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}\right)=4.74+\log \left(\frac{0.030}{0.25}\right)=3.82
$$

A pH of 3.82 gives the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$as 1.51×10^{-4}.
14.82: Because the concentrations of the buffer's conjugate weak acaid and conjugate weak base are within a factor of 10 of each other, we know that

$$
\mathrm{pH}=\mathrm{p} K_{a}+\log \left(\frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right]}\right)=10.64+\log \left(\frac{0.125}{0.130}\right)=10.62
$$

A pH of 10.62 corresponds to a pOH of $14-10.62$, or 3.38 ; thus, the concentration of OH^{-}is $4.2 \times 10^{-4} \mathrm{M}$.
14.86: Because the concentrations of the conjugate weak acid and conjugate weak base are within a factor of 10 of each other, we know that

$$
\mathrm{pH}=\mathrm{p} K_{a}+\log \left(\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}\right)=9.25+\log \left(\frac{0.20}{0.40}\right)=8.95
$$

14.88: Given that the $\mathrm{p} K_{a}$ for acetic acid is 4.57 and the desired pH of 5.00 is within ± 1 of the $\mathrm{p} K_{a}$, we know that we are preparing a buffer and that

$$
\mathrm{pH}=\mathrm{p} K_{a}+\log \left(\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}\right)=4.74+\log \left(\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{0.5}\right)=5.00
$$

Solving for the concentration of $\mathrm{CH}_{3} \mathrm{COO}^{-}$gives

$$
\begin{gathered}
0.26=\log \left(\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{0.5}\right) \\
1.82=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{0.5}
\end{gathered}
$$

and $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=0.91 \mathrm{M}$. This also is the concentration of $\mathrm{NaCH}_{3} \mathrm{COO} \cdot 3 \mathrm{H}_{2} \mathrm{O}$; thus, the grams of $\mathrm{NaCH}_{3} \mathrm{COO} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ are

$$
0.91 \mathrm{M} \times 0.300 \mathrm{~L} \times 136.080 \mathrm{~g} / \mathrm{mol}=37 \mathrm{~g}
$$

14.90: Given that the initial concentrations of $\mathrm{CH}_{3} \mathrm{COOH}$ and of $\mathrm{NaCH}_{3} \mathrm{COO}$ are within a factor of 10 , we know that the solution is a buffer. Mixing equal volumes of the two solutions means that the concentrations of $\mathrm{CH}_{3} \mathrm{COOH}$ and of $\mathrm{NaCH}_{3} \mathrm{COO}$ are cut in half; thus, we have $0.100 \mathrm{M}_{3} \mathrm{COOH}$ and 0.300 M NaCH 3 COO . For (a) we have

$$
\mathrm{pH}=\mathrm{p} K_{a}+\log \left(\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}\right)=4.74+\log \left(\frac{0.3}{0.1}\right)=5.22
$$

and that (b) the solution is acidic. For (c), the moles of $\mathrm{NaCH}_{3} \mathrm{COO}$ in 0.200 L of the buffer is

$$
0.3 \mathrm{~mol} / \mathrm{L} \times 0.200 \mathrm{~L}=0.0600 \mathrm{~mol}
$$

and the moles of $\mathrm{CH}_{3} \mathrm{COOH}$ is

$$
0.1 \mathrm{~mol} / \mathrm{L} \times 0.200 \mathrm{~L}=0.0200 \mathrm{~mol}
$$

Adding $0.034 \mathrm{~mol} / \mathrm{L} \times 0.003 \mathrm{~L}=1.0 \times 10^{-4} \mathrm{~mol}$ of strong acid converts an equivalent number of moles of $\mathrm{NaCH}_{3} \mathrm{COO}$ to $\mathrm{CH}_{3} \mathrm{COOH}$; thus, their moles become

$$
\begin{gathered}
0.0600 \mathrm{~mol}-1.0 \times 10^{-4} \mathrm{~mol}=0.0599 \mathrm{molNaCH}_{3} \mathrm{COO} \\
0.0200 \mathrm{~mol}+1.0 \times 10^{-4} \mathrm{~mol}=0.0201 \mathrm{molCH}_{3} \mathrm{COOH}
\end{gathered}
$$

and the buffer's pH shifts to

$$
\mathrm{pH}=\mathrm{p} K_{a}+\log \left(\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\mathrm{CH}_{3} \mathrm{COOH}}\right)=4.74+\log \left(\frac{0.0599}{0.0201}\right)=5.21
$$

