Suggested Problems: Chapter 16

Problem 16.23: For (a), we see that Mg(s) is oxidized to $Mg^{2+}(aq)$ and that $Ni^{2+}(aq)$ is reduced to Ni(s). The standard state reduction potential for Mg^{2+}/Mg is -2.372 V and the standard state reduction potential for Ni^{2+}/Ni is -0.257 V. The standard state potential for the reaction is

$$E^{\circ} = E^{\circ}_{\text{Ni}^{2+}/\text{Ni}} - E^{\circ}_{\text{Mg}^{2+}/\text{Mg}} = -0.257 - (-2.372) = +2.115 \text{ V}$$

Because the potential is postive, we know that the reaction is favorable.

For (b) we see that $\operatorname{Cu}(s)$ is oxidized to $\operatorname{Cu}^{2+}(aq)$ and that $\operatorname{Ag}^+(aq)$ is reduced to $\operatorname{Ag}(s)$. The standard state reduction potential for $\operatorname{Cu}^{2+}/\operatorname{Cu}$ is 0.34 V and the standard state reduction potential for $\operatorname{Ag}=/\operatorname{Ag}$ is 0.7996 V. The standard state potential for the reaction is

$$E^{\circ} = E^{\circ}_{Ag \equiv /Ag} - E^{\circ}_{Cu^{2+}/Cu} = 0.7996 - 0.34 = +0.4596 \text{ V}$$

Because the potential is postive, we know that the reaction is favorable.

For (c), we ignore the nitrate ion, NO_3^- , as it does not undergo any reactions. We see that Mn(s) is oxidized to $Mn^{2+}(aq)$ and that $Sn^{2+}(aq)$ is reduced to Sn(s). The standard state reduction potential for Mn^{2+}/Mn is -1.185 V and the standard state reduction potential for Sn^{2+}/Sn is -0.1375 V. The standard state potential for the reaction is

$$E^{\circ} = E^{\circ}_{\mathrm{Sn}^{2+}/\mathrm{Sn}} - E^{\circ}_{\mathrm{Mn}^{2+}/\mathrm{Mn}} = -0.1375 - (-1.185) = +1.0589 \text{ V}$$

Because the potential is postive, we know that the reaction is favorable.

For (d), we ignore the nitrate ion, NO_3^- , as it does not undergo any reactions. We see that $Fe^{2+}(s)$ is oxidized to $Fe^{3+}(aq)$ and that $Au^{3+}(aq)$ is reduced to Au(s). The standard state reduction potential for Fe^{3+}/Fe^{2+} is 0.771 V and the standard state reduction potential for Au^{3+}/Au is 1.498 V. The standard state potential for the reaction is

$$E^{\circ} = E^{\circ}_{Au^{3+}/Au} - E^{\circ}_{Fe^{3+}/Fe^{2+}} = 1.498 - (-0.771) = +0.727 \text{ V}$$

Because the potential is postive, we know that the reaction is favorable.

Problem 16.27: The relationship between ΔG° and E° is

$$\Delta G^{\circ} = -nFE^{\circ}$$

where n is then number of electrons transferred in the redox reaction and F is Faraday's constant (96485 $J/V \bullet mol e^{-}$). For (a) we have

$$\Delta G^{\circ} = -(2 \text{ mol } e^{-}) \times (96485 \text{ J/V} \bullet \text{ mol } e^{-}) \times (0.000 \text{ V}) \times \frac{1 \text{ kJ}}{1000 \text{ J}} = 0 \text{ kJ}$$

For (b) we have

$$\Delta G^{\circ} = -(2 \text{ mol } e^{-}) \times (96485 \text{ J/V} \bullet \text{ mol } e^{-}) \times (0.434 \text{ V}) \times \frac{1 \text{ kJ}}{1000 \text{ J}} = -83.7 \text{ kJ}$$

For (c) we have

$$\Delta G^{\circ} = -(1 \text{ mol } e^{-}) \times (96485 \text{ J/V} \bullet \text{ mol } e^{-}) \times (-2.439 \text{ V}) \times \frac{1 \text{ kJ}}{1000 \text{ J}} = +235.3 \text{ kJ}$$