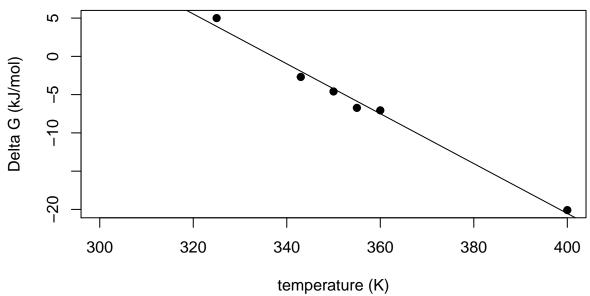
Key for Take-Home Assignment 04


A thermodynamic study of the reaction $2A + 3B \rightarrow C$ gives the following results for $\Delta G^{\rm o}$ at six temperatures in the range 300 K to 400 K. Use Excel or LoggerPro to create a plot of $\Delta G^{\rm o}$ vs. temperature and then use a linear regression analysis to determine values for $\Delta H^{\rm o}$ and for $\Delta S^{\rm o}$. If the reaction has a critical temperature, what is its value?

Attach a copy of your plot to this sheet and place additional work in the space below the table. This assignment is due in one week. Your sample number is 62r.

temperature (K)	$\Delta G^{\rm o} \; ({\rm kJ/mol_{rxn}})$
325	5.00
343	-2.69
350	-4.59
355	-6.73
360	-7.06
400	-20.09

Solution

A plot of ΔG^{o} vs. temperature is shown here along with the line of best fit determined by linear regression.

The equation of the regression line is

$$\Delta G^{\rm o} = -0.33 \times T + 109.83$$

The slope of the line gives $\Delta S^{\rm o}$ as 0.33 kJ/Kmol_{rxn}, and the intercept gives $\Delta H^{\rm o}$ as 109.83 kJ/mol_{rxn}. Using these two values, the critical temperature is

$$T_{\rm crit} = \frac{109.83 {\rm kJ/mol_{rxn}}}{0.33 {\rm kJ/Kmol_{rxn}}} = 337 {\rm K}$$