Key for Take-Home Assignment 04

A thermodynamic study of the reaction $2 \mathrm{~A}+3 \mathrm{~B} \rightarrow \mathrm{C}$ gives the following results for ΔG° at six temperatures in the range 300 K to 400 K . Use Excel or LoggerPro to create a plot of ΔG° vs. temperature and then use a linear regression analysis to determine values for ΔH° and for ΔS°. If the reaction has a critical temperature, what is its value?

Attach a copy of your plot to this sheet and place additional work in the space below the table. This assignment is due in one week. Your sample number is 62 r .

temperature (K)	$\Delta G^{\mathrm{o}}\left(\mathrm{kJ} / \mathrm{mol}_{\mathrm{rxn}}\right)$
325	5.00
343	-2.69
350	-4.59
355	-6.73
360	-7.06
400	-20.09

Solution

A plot of ΔG° vs. temperature is shown here along with the line of best fit determined by linear regression.

The equation of the regression line is

$$
\Delta G^{\circ}=-0.33 \times T+109.83
$$

The slope of the line gives ΔS° as $0.33 \mathrm{~kJ} / \mathrm{Kmol}_{\mathrm{rxn}}$, and the intercept gives ΔH° as $109.83 \mathrm{~kJ} / \mathrm{mol}_{\mathrm{rxn}}$. Using these two values, the critical temperature is

$$
T_{\mathrm{crit}}=\frac{109.83 \mathrm{~kJ} / \mathrm{mol}_{\mathrm{rxn}}}{0.33 \mathrm{~kJ} / \mathrm{Kmol}_{\mathrm{rxn}}}=337 \mathrm{~K}
$$

