Kinetic of the Hydrolysis of Urea: Part II

Open the file "Hydrolysis of Urea," which shows a plot of [urea] as a function of time. Determine the rate law for this reaction by linearizing the data. You may do this by creating a new calculated column or by copying and pasting the data into Excel. To see the data, select Insert: Table from the main menu. Using your results, answer the following set of questions:
(1). What is the reaction's rate constant and rate law?

Answer. A graph of $\ln [$ urea] as a function of time is linear; thus, the reaction is first-order. The rate constant is the negative slope of this plot, or $0.0850 d^{-1}$, The rate law, therefore, is

$$
R=k[\text { urea }]=0.0851 \mathrm{~d}^{-1} \times[\text { urea }]
$$

(2). What is the original concentration of urea?

Answer. Although we have an experimental [urea] at $t=0$, we also can calculate it using the linearized rate law, which is equivalent to $\ln [\text { urea }]_{0}$; thus, $\ln [\text { urea }]_{0}=-0.105$ and $[\text { urea }]_{0}=0.900 \mathrm{M}$.
(3). What is the reaction's half-life?

Answer. For a first-order reaction the half life is

$$
t_{1 / 2}=\frac{0.693}{k}=\frac{0.693}{0.0850 \mathrm{~d}^{-1}}=8.15 \mathrm{~d}
$$

(4). What is the expected rate of the reaction at $t=10$ days?

Answer. To find this we use the tangent tool to determine the slope at $t=10$ days. This gives a result of $0.034 \mathrm{M} / \mathrm{d}$. We also can calculate the rate by determining the concentration of urea at $t=10$ days using the integrated form of the rate law and then substituting into the rate law; thus

$$
\begin{gathered}
\ln [\text { urea }]_{t=10}=\ln [\text { urea }]_{0}-k t \\
\ln [\text { urea }]_{t=10}=\ln (0.900)-\left(0.0850 \mathrm{~d}^{-1}\right) \times\left(10 \mathrm{~d}^{-1}\right) \\
\ln [\text { urea }]_{t=10}=-0.955 \\
{[\text { urea }]_{t=10}=0.385 \mathrm{M}} \\
R=k[\text { urea }] \\
R=\left(0.0850 \mathrm{~d}^{-1}\right) \times(0.385 \mathrm{M})=0.033 \mathrm{M} / \mathrm{d}
\end{gathered}
$$

(5). How many days will it take for the [urea] to reach 0.050 M ?

Answer. We can calculate this using the integrated rate law as well; thus

$$
\ln [\text { urea }]_{t}=\ln [\text { urea }]_{0}-k t
$$

$$
\begin{gathered}
\ln (0.050)=\ln (0.900)-\left(0.0850 \mathrm{~d}^{-1}\right) \times t \\
t=34.0 \mathrm{~d}
\end{gathered}
$$

(6). If the original concentration of urea is 5.0 M , how long will it take for the concentration to reach 0.10 M ?

Answer. Changing the initial concentration has no effect on the rate law, which remains the same; thus

$$
\begin{gathered}
\ln [\text { urea }]_{t}=\ln [\text { urea }]_{0}-k t \\
\ln (0.10)=\ln (5.0)-\left(0.0850 \mathrm{~d}^{-1}\right) \times t \\
t=46.0 \mathrm{~d}
\end{gathered}
$$

