Kinetic of the Hydrolysis of Urea: Part II

Open the file "Hydrolysis of Urea," which shows a plot of [urea] as a function of time. Determine the rate law for this reaction by linearizing the data. You may do this by creating a new calculated column or by copying and pasting the data into Excel. To see the data, select Insert: Table from the main menu. Using your results, answer the following set of questions:

(1). What is the reaction's rate constant and rate law?

Answer. A graph of $\ln[\text{urea}]$ as a function of time is linear; thus, the reaction is first-order. The rate constant is the negative slope of this plot, or 0.0850 d^{-1} , The rate law, therefore, is

R = k[urea] = 0.0851 d⁻¹ × [urea]

(2). What is the original concentration of urea?

Answer. Although we have an experimental [urea] at t = 0, we also can calculate it using the linearized rate law, which is equivalent to $\ln[\text{urea}]_0$; thus, $\ln[\text{urea}]_0 = -0.105$ and $[\text{urea}]_0 = 0.900$ M.

(3). What is the reaction's half-life?

Answer. For a first-order reaction the half life is

$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{0.0850 \text{ d}^{-1}} = 8.15 \text{ d}$$

(4). What is the expected rate of the reaction at t = 10 days?

Answer. To find this we use the tangent tool to determine the slope at t = 10 days. This gives a result of 0.034 M/d. We also can calculate the rate by determining the concentration of urea at t = 10 days using the integrated form of the rate law and then substituting into the rate law; thus

$$\ln[\text{urea}]_{t=10} = \ln[\text{urea}]_0 - kt$$

 $\ln[\text{urea}]_{t=10} = \ln(0.900) - (0.0850\text{d}^{-1}) \times (10\text{d}^{-1})$

 $\ln[\text{urea}]_{t=10} = -0.955$

 $[{\rm urea}]_{t=10} = 0.385~{\rm M}$

$$R = k$$
[urea]

 $R = (0.0850 \mathrm{d}^{-1}) \times (0.385 \mathrm{M}) = 0.033 \mathrm{M/d}$

(5). How many days will it take for the [urea] to reach 0.050 M?

Answer. We can calculate this using the integrated rate law as well; thus

$$\ln[\text{urea}]_t = \ln[\text{urea}]_0 - kt$$

$$\ln(0.050) = \ln(0.900) - (0.0850 \text{ d}^{-1}) \times t$$

 $t=34.0~{\rm d}$

(6). If the original concentration of urea is 5.0 M, how long will it take for the concentration to reach 0.10 M? **Answer**. Changing the initial concentration has no effect on the rate law, which remains the same; thus

 $\ln[\text{urea}]_t = \ln[\text{urea}]_0 - kt$

 $\ln(0.10) = \ln(5.0) - (0.0850 \text{ d}^{-1}) \times t$

t = 46.0 d