
Key for Unit II Exam: Liquid-Liquid Extractions
This exam consists of three shorter problems that call for written responses and/or shorter calculations,
and three longer problems that explore the modeling of a liquid-liquid extraction. Prepare your responses
to each qeustion in the form of an organized and well-written narrative that explains how you approached
the problem and that clearly states your conclusions. Where derivations and coding is involved, be sure to
organize and annotate your work so that I can assign partial credit where appropriate. Neatness is a plus!

You are free to use your textbook, the library, web resources, previous problem sets, your notes, and handouts
from class while working on this exam. You are not free to discuss any portion of this exam with other
students or with faculty members other than the instructor. This restriction applies to R as well. Please
direct all questions about the exam or about the use of R to the instructor.

A hard copy of your answers are due in class on Friday, April 19th.

Part I: Shorter Questions

Question 1 (7 points). The amount of copper in a penny is determined by an analytical method in which
zinc is an interferent. The selectivity coefficient, KCu,Zn, for the analytical method is 0.125. When a sample
where [Cu2+]o = 10 × [Zn2+]o is carried through a separation to remove the zinc, the error in the analysis
for copper is −2.42%. When a second sample where [Cu2+]o = 0.1 × [Zn2+]o is carried through the same
analysis, the error is 5.88%. Knowing that the absolute error, E, is defined as

E = (RCu − 1) + KCu,Zn × [Zn2+]o
[Cu2+]o

× RZn

what are the recoveries for Cu2+ and of Zn2+?

Answer: Substituting in the errors and the initial concentrations gives two equations

0.0588 = (RCu − 1) + 0.125 × 10
1 × RZn

−0.0242 = (RCu − 1) + 0.125 × 1
10 × RZn

with two unknowns, RCu and RZn, which we can solve for simultaneously. Subtracting the second equation
from the first equation gives

0.083 = 1.2375 × RZn

which we solve to give RZn = 0.067, or 6.7%. Substituting back into gives RCu = 0.975, or 97.5%.

Question 2 (7 points). What is the smallest distribution ratio for a solute, S, if you want to extract 99.9%
of S from 50.0 mL of aqueous phase using two 25.0-mL portions of the organic solvent?

Answer: If we extract 99.9% of the solute into the organic phase, then qaq = 0.001; thus

qaq = 0.001 =
(

Vaq

DVorg + Vaq

)2
=
(

50
25D + 50

)2

Taking the square root of both sides
0.03162 = 50

25D + 50
and solving for D

0.7906D + 1.5811 = 50

gives its value as 61.25; this is the smallest possible value for D.

1



Question 3 (11 points). The figure below shows the distribution ratio for the aqueous solutes A, B, and
C as a function of pH. Describe how you can separate these solutes from each other and from other inert
species solely by adjusting the sample’s pH and extracting with a non-polar organic solvent.
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Answer: The goal is to end up with each solute in a phase—organic or aqueous—that is free from all other
solutes, including inert species other than A, B, and C. To accomplish this separation, we need to use a
minimum of three steps. Here is one approach:

For the first step, we adjust the pH to ≈ 1, where D ≈ 0 for A and for C, but is ≈ 4 for B; this
allows us to extract B into the organic phase, leaving A and C in the aqueous phase. A pH of 2
also will work with a somewhat larger D for A, but with a D for B that is a touch above 0 (or, at
least, that increases quickly above a pH of 2, which means any error in pH has the potential for a
bad outcome).

For the second step, we adjusts the pH to ≈ 3, where D ≈ 0 for C and ≈ 30 for A; this allows us
to extract A into the organic phase, leaving C in the aqueous phase.

Finally, we adjust the pH to ≈ 9 − 10, where D ≈ 25 for C; this allows us to extract C into the
organic phase, leaving behind any inert materials in the aqueous phase.

There are other possibilities as well. For example, we can set the pH to ≈ 3 and extract A and B into the
organic phase. We can then use clean aqueous phase with a pH of 9 to separate A and B by extracting A into
the aqueous phase. Finally, to separate C from inert species in the original sample, we extract the original
aqueous phase, which now contains only C, after adjusting its pH to ≈ 9 − 10, a pH where C extracts into
the organic phase.

Part II: Longer Questions

Problem 4 (25 points). Suppose you need to move a weak acid, HA, from one aqueous phase to a different
aqueous phase. Because aqueous phases are completely soluble in each other, the phases are separated by a
hydrophobic membrane that allows neutral molecules to pass through, but that is impermeable to ions. The
following equilibrium reactions define this system, where the subscripts 1 and 2 identify the two aqueous
phases:

HA’s acid dissociation reaction in aqueous phase 1

(HA)1 + H2O (H3O+)1 + (A–)1
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Ka = [H3O+]1[A–]1
[HA]1

HA’s acid dissociation reaction in aqueous phase 2

(HA)2 + H2O (H3O+)2 + (A–)2

Ka = [H3O+]2[A–]2
[HA]2

HA’s partition coefficient between the two phases

(HA)1 (HA)2

KD = [HA]2
[HA]1

Note that we are assuming that HA’s Ka value is the same in both aqueous phases. Using these three
equilibrium reactions, derive a mathematical expression for HA’s distribution ratio, D, between the two
aqueous phases. Your final equation should include the following terms only: KD, Ka, [H3O+]1, and [H3O+]2.
Based on your equation, if you want to move HA from aqueous phase 1 to aqueous phase 2, which of the
following conditions will you use: (a) (pH)1 ≈ (pH)2 << 7, (b) (pH)1 ≈ (pH)2 >> 7, (c) (pH)1 ≈ (pH)2 ≈ 7,
(d) (pH)1 << 7 and (pH)2 >> 7, (e) (pH)1 >> 7 and (pH)2 << 7

Explain your choice in several sentences; although no calculations are necessary to defend your choice, you
may include them if you wish. Note: You might recognize that this is a simple model for a cell membrane
that separates two physiological fluids.

Answer: The distribution ratio must account for the concentrations of HA and of A– in both phases; thus

D = [HA]2 + [A–]2
[HA]1 + [A–]1

To account for the secondary equilibrium in each phase, we note that the concentration of A– in each phase is
related to the concentration of HA and the concentration of H3O+ through the Ka expression

[A–]i = Ka[HA]i
[H3O+]i

where i is the phase. Substituting into the equation for D

D =
[HA]2 + Ka[HA]2

[H3O+]2

[HA]1 + Ka[HA]1
[H3O+]1

and factoring out HA in both the numerator and the denominator gives

D = [HA]2
[HA]1

×

(
1 + Ka

[H3O+]2

1 + Ka

[H3O+]1

)

Finally, we note that the ratio [HA]2/[HA]1 is equivalent to KD and neaten up the remainder of the equation
to avoid having fractions in the numerator and the denominator, leaving us with a final equation of

D = KD
([H3O+]2 + Ka)[H3O+]1
([H3O+]1 + Ka)[H3O+]2

To evaluate the best set of pH values, you can reason using Le Châtelier’s Principle. If we want to move HA
from phase 1 into phase 2, then we want the pH in phase 1 to favor its conjugate weak acid form, HA, and we
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want the pH in phase 2 to favor its conjugate weak base form, A–. To accomplish this, we use condition (d)
where (pH)1 << 7 and where (pH)2 >> 7. Under this condition, the HA in phase 2 is converted to A–, which
decreases the concentration of HA, causing more HA to move from phase 1 to phase 2. Note that we arrive at
the same conclusion by considering just the relative values of [H3O+]1, [H3O+]2, and Ka; thus, if (pH)1 << 7
and (pH)2 >> 7, then, for any reasonable value of Ka we have [H3O+]1 >> Ka and [H3O+]2 << Ka, which
allows us to simplify the equation for the distribution ratio to

D ≈ KD
Ka[H3O+]1

[H3O+]1[H3O+]2
≈ Ka

[H3O+]2
>> 1

Another approach is a brute force calculation of D for a variety of pH values with KD = 1 and Ka = 1 × 10−7;
here is one such calculation and plot of the data, which leads to the same conclusion. The code includes a
function called model that calculates D for any two pH values and the R function outer that calculates D
for all possible combinations of pH levels. The function levelplot from the lattice package shows how D
varies with changes in pH.
ph1 = seq(1,14,1)
ph2 = seq(1,14,1)
h3o1 = 10^-ph1
h3o2 = 10^-ph2
kd = 1
ka = 1e-7
model = function(h3o1,h3o2){kd * (h3o1 * (h3o2 + ka))/(h3o2 * (h3o1 + ka))}
d = outer(h3o1, h3o2, model)
library(lattice)
levelplot(d, xlab = "ph1", ylab = "ph2", zlab = "D", row.values = ph2,column.values = ph1)
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Problem 5 (25 points). The ligand 8-hydroxyquinoline, C9H6ON, also known as oxine, is both a weak
acid and a weak base. If we represent its neutral form as BH, then its fully protonated form is BH +

2 and its
fully deprotonated form is B–. Oxine’s two pKa values are 4.81 and 9.81, and its KD between water and
chloroform is 720. The distribution ratio, D, for oxine depends on the pH of the aqueous phase and is defined
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as
D = KD × Ka1[H3O+]

[H3O+]2 + Ka1[H3O+] + Ka1Ka2

Using this information, create a plot that shows the fraction of oxine extracted into chloroform as a function
of pH assuming a single extraction using equal volumes of water and chloroform. You may choose to use R or
Excel to create your plot. If you use R, you may begin with the script acidbaseLLE.R that we examined in
class, modifying it to meet your needs. In addition to your plot, be sure to submit your script file if you use
R, or your spreadsheet file if you use Excel.

Answer: Before creating the plot, it helps to begin by considering what we expect to see. Given the
information about oxine, its neutral form is the predominate form in the pH range 4.81 to 9.81; thus, we
expect that the fraction extracting into CHCl3 will be at its greatest for moderate pH values and will decrease
toward zero when the pH becomes sufficiently acidic or basic. Here is the code and plot, both modified from
the code in the file acidbaseLLE.R:
#' Enter the pKa values and the Kd value
pka1 = 4.81
pka2 = 9.81
kd = 720

#' Set up range of pH values
ph = seq(1, 14, 0.01)
h = 10^-ph

#' Calculate distribution ratio
ka1 = 10^-pka1
ka2 = 10^-pka2
d = kd * (ka1 * h)/(h^2 + ka1 * h + ka1 * ka2)

#' Calculate the fraction of oxine in the organic layer
qaq = 1/(d + 1)
qorg = 1 - qaq

#' Examine results as a function of pH
plot(ph, qorg, type = "l", lwd = 2, lty = 1, col = "blue",

xlab = "pH", ylim = c(0, 1), ylab = "fraction")
grid(col = "black")
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Problem 6 (25 points). The script cce_exam.R contains two functions for exploring the countercurrent
extractions of a mixture of three diprotic acids, each of which take the forms H2X+, HX, and X–, in which, as
is the case for oxine (see previous problem), the fully protonated species is a cation and the fully deprotonated
species is an anion. The function ccextract

cceextract(pH)

models the extraction over 50 cycles, or steps, using the pH passed to the function. The three weak acids
have KD values of 5, 4, and 6 for, respectively, HA, HB, and HC, but differ significantly in their pKa values,
which are 5 and 9 for H2A+, 3 and 7 for H2B+, and 7 and 11 for H2C+. The function cce.plot displays the
distribution of the three compounds at the end of the 50 cycles

cce.plot(x)

where x is the name of an object created using ccextract. Examine the effect of pH on the separation of the
three compounds and explain your results in terms of the properties of the compounds. Your analysis should
be in the form of 1–3 well-written paragraphs supplemented with figures that support your analysis. Give
attention to how pH affects the order in which the compounds move through the system and pH values that
favor a separation of all three compounds.

Answer: Although we can methodically explore the effect of pH on this separation by running scenarios
over a wide range of pH values, it is best to consider what we might expect given the properties of the three
compounds. Given the nature of the compounds, each will move through the system when in its neutral form
(the simulation assumes that the mobile phase is organic and the stationary phase is aqueous); thus, given
their respective pKa values, we expect that lower pHs will favor the movement of HB and that higher pHs
will favor the movement of HC, as shown in the following two plots at pH levels of 4 and of 10
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Given their relative pKa values, we should not be surprised to see that all three species migrate at more
neutral pH values, as shown here for pH values of 6.5, 7, and 7.5, which prevents a clean separation of the
three compounds.
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Finally, we should not be surprised to see that there is little movement of any compound for more extreme
pH values, such as a pH of 1 and a pH of 14.
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