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1 Introduction

Suppose agents have credence functions, which satisfy probabilism, and

which are defined over some set of worlds, W . Distinguish two sorts of

learning experiences such an agent could undergo. In the first kind of sit-

uation, the agent knows she will receive evidence that tells her that some

one cell of a partition over W is true. In the second kind of situation, the

agent knows that she will receive evidence that tells her that the weights

she currently assigns to a partition over W need to be changed. For a sim-

ple example of the first sort of situation, we can imagine an agent who is

about to learn whether E or E. For a simple example of the second sort of

situation, we can imagine an agent who is about to learn that her distribu-

tion of credence to E and E needs to be altered. Call the first situation a

conditionalization scenario and the second situation a Jeffrey scenario.

The reason for these names is that many think that in a conditionaliza-

tion scenario, the agent should plan to update via conditionalization, where

conditionalization recommends that cnew(X) = cold(X|E) for all proposi-
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tions X where E corresponds to the cell in the partition that was learned.

In a Jeffrey scenario, on the other hand, many think that the agent should

plan to update via Jeffrey conditionalization, where Jeffrey conditionaliza-

tion recommends that cnew(X) =
∑

i cold(X|Ei)×Ei for all propositions X

where Ei is the newly learned weight on the ith cell of the evidence partition.

2 Conditionalization, Jeffrey Conditionalization, and

Accuracy

How does the argument for planning to update via conditionalization go?

The idea is this. The expected inaccuracy of an updating plan can be

understood as the expected inaccuracy of the credence function that is the

result of that plan, in the situations where that plan would be adopted. So,

if E is the evidence partition, then let RE be the updating plan. RE is a

function that outputs a particular credence function for every element of

the partition. In particular, if Ew is the element of partition E that is true

at w, then let REw be the credence function that the plan RE outputs at

w. Let S(c, w) be a measure of the inaccuracy of a credence function, c, in

world, w. Hence, the expected inaccuracy of the plan RE as viewed from

the agent’s current credence function, c, is:
∑

w c(w)S(REw , w).

Let’s think how this works in a simple case. Suppose there are four

worlds and the evidence partition consists of two elements, E and E. Let’s

suppose that w1, w2 ∈ E and w3, w4 ∈ E. Now, what does an inaccuracy-

minimizing RE look like? The first thing to note is that it must be the case

that REw1
= REw2

and REw3
= REw4

, since part of what it is to be an
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updating plan is to give the same instructions for any worlds within a cell

of a partition. For ease of reference, then, let RE be the credence function

that the plan recommends for w1 and w2 and RE be the credence function

that the plan recommends for w3 and w4. Thus, we want to find the RE

and RE that minimize:

c(w1)S(RE , w1) + c(w2)S(RE , w2) + c(w3)S(RE , w3) + c(w4)S(RE , w4)

Note first that the inaccuracy minimizing plan must be such that RE as-

signs E credence 1 and RE assigns E credence 1. This is because at both

w1 and w2 E is true, and so assigning it anything less than 1 would be

more inaccurate. A similar thing is true for w3 and w4 with respect to E.

How should RE and RE treat other propositions? Greaves & Wallace prove

that to minimize inaccuracy they should yield the verdicts of conditional-

ization. But for now, note something about the expected inaccuracy of this

updating plan is calculated. In particular, we do not consider how RE is ex-

pected to do from the perspective of every world the agent assigns credence

to. Rather, we are concerned with is how well RE is expected to do, only

from the perspective of the E-worlds the agent assigns credence to. And a

similar thing, of course, is true for RE : this plan is assessed only from the

perspective of the E-worlds the agent assigns credence to.

Noticing this is important, for we can then redescribe how the inaccuracy

minimization argument for conditionalization goes in such a way that will

make it more amenable to Jeffrey scenarios. Here is that redescription:

Suppose I have credence function c now and we have specified an
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evidence partition, E . We want to know what credence function,

c′, I should plan to transition to, supposing I learn that one of the

elements of E is true. Here’s how we do it. I should transition to

the credence function, c′ that (a) assigns the true element E ∈ E

credence 1, and (b) has the lowest expected inaccuracy, from the

perspective of c, ignoring the summands in this expectation that

are weighted by c(wi) for wi /∈ E.

This redescription yields exactly the same results as the plan-based proce-

dure mentioned above. And Greaves & Wallace’s proof tells us that the

c′ that minimizes inaccuracy according to this procedure just is c′(X) =

c(X|E).

Now, consider how to adapt this procedure to Jeffrey scenarios where

one learns not that an element of a partition is true, but rather that the

evidence partition itself should be assigned different weights. For instance,

suppose c(E) = 0.3 and c(E) = 0.7, but I subsequently learn that E should

be assigned a weight of E and E a weight of E. For instance, it may

be that E = 0.6 and E = 0.4. How do we evaluate updating plans in

this kind of scenario, from the perspective of minimizing inaccuracy? The

usual way to think about it is as follows: I should choose the credence

function c′ that (a) satisfies the evidential constraint (in this case, that

c′(E) = 0.6 and c′(E) = 0.4), and (b) has the lowest expected accuracy from

the perspective of c. Notice that we don’t ignore any summands because no

worlds are eliminated by this evidence. If we follow this procedure, we get

very different results for different scoring rules. If we use the log score, we
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get Jeffrey Conditionalization. If we use the Brier score, however, we get a

very different updating rule (see Leitgeb & Pettigrew for details).

However, I think the procedure described in the previous paragraph is

not quite right. The method for how we deal with Jeffrey scenarios should

have some continuity with how we think of the more simple conditionaliza-

tion scenarios. In the conditionalization scenarios, when E is learned, we

look at the expected inaccuracy of the new credence function c′ weighted

only by c(wi) for wi ∈ E. Why do we do that? Well, suppose you’re going

to do option A if w1 or w2 and B if w3 or w4. Once you learn that you are

in w1 or w2, it doesn’t matter how good A would be if you were in w3 or

w4. Consider an example: suppose doubling my bet is a good idea if an ace

is the next card dealt, but a bad idea otherwise. Once I learn that an ace is

dealt, it doesn’t matter to me in evaluating the decision to double my bet

that doubling it would be a bad idea had an ace not come up.

Now, consider how this translates to Jeffrey scenarios. In evaluating RE

in the conditionalization scenario we completely ignore summands c(wi) for

wi /∈ E. This is because we know that these c(wi) represent a mistaken view

about what could happen. In the Jeffrey scenario, we should do something

similar. Suppose, again, that c(E) = 0.3 and c(E) = 0.7, but I subsequently

learn that E should be assigned a weight of 0.6 and E a weight of 0.4.

Then though I do not ignore any summands in the expected inaccuracy

calculation completely, I should rescale the importance I give to them. In

this scenario, for instance, when I come to calculate the expected inaccuracy

of various possible credence functions I could transition to, I should weigh

more heavily the influence of c(wi) for wi ∈ E compared to the c(wj) for wj ∈
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E. This is because I’ve just learned that c was assigning too much credence

to the E-worlds compared to the E-worlds. This will make our procedure

for determining updating rules in Jeffrey scenarios continuous with what we

do when propositions are learned in conditionalization scenarios.

Applied to the Jeffrey scenario we’ve been considering, that is, we want

to choose the c′ that respects the evidence concerning E and E and that

minimizes:

α
∑
wi∈E

c(wi)×S(c′, wi) + β
∑
wj∈E

c(wj)×S(c′, wj)

where α and β are the appropriate weights. A natural way to assign these

weights is as follows: α = E/c(E) and β = E/c(E). One reason this is

natural is that it converges on the procedure for learning the proposition E

in a conditionalization scenario as E → 0, since in that case we completely

ignore the summands for c(wj) for wj ∈ E. Further, E/c(E) is a natural way

to measure how much more influence you need to give to different worlds in

light of the information learned in a Jeffrey scenario. If E/c(E) > 1 then

you need to give those E-worlds more influence; if E/c(E) < 1 you need to

give E-worlds less influence. And if E/c(E) = 1, this dictates no change in

credence, which is just what we want (since nothing is learned).

The interesting thing is that if we set up things this way, then we get the

result that every strictly proper scoring rule leads to Jeffrey Conditionaliza-

tion. To see this, consider the simplest case where the evidence is E, E. We
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want to choose the c′ such that c′(E) = E, c′(E) = E, and that minimizes:

E/c(E)
∑
wi∈E

c(wi)S(c′, wi) + E/c(E)
∑
wi∈E

c(wj)S(c′, wj).

Because c′(E) = E and c′(E) = E, this is equivalent to:

∑
wi∈E

c′(E)c(wi)/c(E)S(c′, wi) +
∑
wj∈E

c′(E)c(wj)/c(E)S(c′, wj)

Since S is strictly proper, the c′ that minimizes this sum is the function

such that

c′(wi) =
c′(E)c(wi)

c(E)

c′(wj) =
c′(E)c(wj)

c(E)

Now, notice that if we Jeffrey conditionalize on E, E, then for any world,

w:

c′(w) = c′(E)c(w|E) + c′(E)c(w|E)

For worlds wi ∈ E, c(wi|E) = 0 and for worlds wj ∈ E, c(wj |E) = 0. Hence:

c′(wi) = c′(E)c(wi|E) =
c′(E)c(wi ∧ E)

c(E)

c′(wj) = c′(E)c(wj |E) =
c′(E)c(wi ∧ E)

c(E)

Because all the wi are wholly contained in E and all the wj are wholly
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contained in E, c(wi ∧ E) = c(wi) and c(wj ∧ E) = c(wj). Hence we have:

c′(wi) =
c′(E)c(wi)

c(E)

c′(wj) =
c′(E)c(wj)

c(E)

This suffices to show that the credence function that minimizes expected

inaccuracy—appropriately weighted—relative to any proper score in a Jef-

frey scenario is the credence function that results from Jeffrey Conditional-

ization.


