
Accuracy, Verisimilitude, and Scoring Rules

forthcoming in Australasian Journal of Philosophy

Jeffrey Dunn (DePauw University)

jeffreydunn@depauw.edu

Abstract

Suppose that beliefs come in degrees. How should we then mea-

sure the accuracy of these degrees of belief? Scoring rules are usually

thought to be the mathematical tool appropriate for this job. But

there are many scoring rules, which lead to different ordinal accuracy

rankings. Recently, Fallis and Lewis (2016) have given an argument

that, if sound, rules out many of the many popular scoring rules, in-

cluding the Brier score, as genuine measures of accuracy. I respond to

this argument, in part by noting that the argument fails to account

for verisimilitudethat certain false hypotheses might be closer to the

truth than other false hypotheses. Oddie (forthcoming), however, has

argued that no member of a very wide class of scoring rules (the so-

called proper scores) can appropriately handle verisimilitude. I explain

how to respond to Oddies argument and recommend a class of weighted

scoring rules that, I argue, genuinely measure accuracy while escaping

the arguments of Fallis and Lewis as well as Oddie.
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1 Introduction

Suppose that one is attracted to an epistemic picture according to which

epistemic value comes first, and from this we derive our epistemic norms.

An important part of this project is to say something about epistemic value.

There are many ways to go here, but a particularly popular approach thinks

that epistemic value is had by beliefs, and that the value of a belief in-

creases as the belief increases in accuracy.1 If we think of beliefs as coming

in degrees, then we can represent belief states with credence functions: as-

signments of real numbers to propositions, where the greater the number

the stronger the belief in that proposition. The question for such a theorist

is to say how to rank credence functions in terms of their accuracy. Such

a ranking is of course only part of the whole story—one would still need

to explain how these facts about accuracy generate epistemic norms.2 But

getting the accuracy facts right is clearly necessary. This paper is about

the right way to measure accuracy for credence functions. While I’ve moti-

vated the project by appealing to a certain conception of epistemology, even

those who don’t take this approach have reason to be interested. For even

if accuracy isn’t the only thing that matters, it is certainly an important

component of what matters.

Mathematicians and statisticians have devised mathematical tools—often

called scoring rules—to rank the accuracy of probabilistic forecasts. This is

a good place to start if one wants to rank credence functions for accuracy.

For any of these rules to assist us in measuring accuracy, some minimal

constraints must be placed on them. For instance, any measure of accuracy

1Goldman (1999) dubs this view ‘veritism’.
2James Joyce (1998) gives the first indication how such a story might go. For other

representative work in this vein see Greaves & Wallace (2006), Gibbard (2008), Joyce
(2009), Leitgeb & Pettigrew (2010a,b), and Pettigrew (2016).
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must be truth-directed in the sense that if two credence functions differ only

in that the first gives greater credence to the true propositions, then the

first is more accurate than the second. Another widely accepted constraint

is that scoring rules must be proper.3 Roughly, a proper score is one where

any probability function expects itself to be at least as accurate as any other

probability function according to that score.4 There are several other plau-

sible constraints on scoring rules.5 But these widely-agreed upon constraints

leave us with many possible ways to measure accuracy. So, it is an open

question what is the right way to do it.

In this paper, I won’t give a maximally specific answer to this question,

but I will give an answer that rules out many approaches. I’ll do this by

first responding to arguments in Fallis & Lewis (2016). They argue against

the very popular Brier score, and in favor of what I’ll call the Partition-

based Logarithmic Score. I argue that their arguments are flawed, which

can be seen in an especially clear way when we focus on the phenomenon

of verisimilitude: the fact that certain hypotheses while false, may be closer

to the truth than other hypotheses. This motivates a search for scoring

rules that can properly handle this phenomenon. This search, however, is

challenged by a recent argument from Graham Oddie (forthcoming) that

purports to show that no proper scoring rule can handle the phenomenon

of verisimilitude. I respond to Oddie’s argument and defend a particular

class of scoring rules as those that genuinely measure accuracy. One feature

of this class is worth noting: scores in this class maintain that the way

that credence is distributed to false hypotheses can affect the accuracy of a

3Though see Blackwell Drucker [forthcoming] for a dissenting view.
4More formally, and using terminology to be introduced below, a local score, s, is

proper just in case for 0 ≤ p ≤ 1, ps(1, x) + (1 − p)s(0, x) is minimized at x = p (a score
is said to be strictly proper if it is uniquely minimized at x = p).

5See, for instance, Joyce (2009) or Pettigrew (2016), chs. 3-4.
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credence function. This is especially plausible in cases where more credence

is given to false hypotheses that are closest to the truth, but I argue that it is

defensible independent of considerations of verisimilitude (and, further, that

this feature sometimes is in conflict with considerations of verisimilitude).

The paper closes by considering how my proposal compares with a recent

argument due to Richard Pettigrew (2016) that the Brier score is the unique

measure of accuracy, as well as how extant accuracy-based arguments fare

on my proposal.

But before getting to all this, some preliminary distinctions will (hope-

fully) make things easier to follow.

2 Global and Local, Partitions and Algebras

Distinguish first between a local scoring rule and a global scoring rule. A

local scoring rule takes as inputs a prediction about a proposition—in our

case, a credence in a proposition—and the truth value of that proposition,

and gives you an accuracy score. So, for instance, we’d use a local scoring

rule if we wanted to score for accuracy a credence of 0.75 that it will rain

on a day when it does rain. More formally, a local scoring rule is a function

s : {0, 1} × [0, 1] → [0,∞]. One example is the Local Brier Score (Brier,

1950):

b(1, c(X)) = (1− c(X))2

b(0, c(X)) = (0− c(X))2

This takes the score of a credence, c(X), in proposition X to be the square

of the difference between the credence and the truth (with 1 representing

truth and 0 representing falsity).6

6Note that a score of 0 obtains when one is fully confident in X and X is true or when
one has no confidence in X and it is false, so the Local Brier Score is best thought of as a
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A global scoring rule, in contrast, takes as input a set of predictions—in

our case, an entire credence function—and the true state of the world, and

delivers the accuracy of that entire set of predictions. There are different

ways to build global scoring rules. One way to do this is to think of credences

as assigned to a partition (rather than an set of propositions) of the possible

outcomes. We then score the way that probability is distributed to the

partition relative to which cell of the partition is actual. One can take

this route and define the Partition-based (Global) Brier Score. Let

H1, H2, . . . ,Hn be a set of n mutually exclusive and exhaustive hypotheses,

Ht be the true hypothesis, and vHt(X) be the function that takes value 1

when X = Ht and 0 otherwise. We have:

B(Ht, c) =
∑n

i=1(vHt(Hi)− c(Hi))
2

This is just the sum of the Local Brier Score applied to the elements of

the partition. But not all partition-based global scoring rules are like this.

For instance, the Partition-based (Global) Logarithmic Score7 (which

we’ll see later in this paper) is:

L(Ht, c) = −ln(c(Ht))

Notice here we don’t sum a local score over all the elements of a parti-

tion. Instead, the score is determined by the natural logarithm of the true

hypothesis.

A related, but importantly different way to go, is to build a global scoring

rule by summing the local score for some set of propositions over which a

credence function is defined.8 We can do this to get the Proposition-based

measure of inaccuracy. In fact this is true of all the scores we will encounter in this paper:
they are all measures of inaccuracy.

7Throughout this paper I use the natural logarithm in all statements of various loga-
rithmic scores, but choosing any base for the logarithm will result in a score that yields
the same ordering of credence functions in terms of accuracy.

8Pettigrew (2016) calls such scores ‘additive inaccuracy measures’.
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(Global) Brier Score. Let F be the set of propositions to which credence

function c assigns credence, and let w be a possible world defined as finely

grained as the propositions in F allow. Then we have:

B∗(w, c) =
∑

X∈F (vw(X)− c(X))2

Alternatively, there is the Proposition-based (Global) Logarithmic

Score:

L∗(w, c) =
∑

X∈F l(vw(X), c(X))

where

l(1, c(x)) = −ln(c(X))

l(0, c(x)) = −ln(1− c(X))

In sum, then, we have local scoring rules, which score particular cre-

dences and we have global scoring rules, which can be either partition-based

or proposition-based, that score entire credence functions. Since we’ll be

concerned primarily with global scores, I’ll drop the word ‘Global’ for read-

ability; if I’m discussing a local score, I’ll note that explicitly.

3 Fallis & Lewis Against the Brier Score

Fallis & Lewis (2016) argue against the Partition-based Brier Score. Their

argument turns on the fact that this score does not satisfy a plausible-looking

constraint on scoring rules. The constraint is:

(M3) All other things being equal, if credence function c2 assigns a lower

probability to some false hypothesis than credence function c1 does,

then c2 is epistemically better than c1.
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What (M3) says depends on what “all other things being equal” means. Fal-

lis & Lewis are focusing solely on probabilistically coherent credence func-

tions defined over the same partition, so there’s no way for c2 to assign a

lower probability than c1 to some false hypothesis and yet c2 and c1 be in

every other way identical. What they mean by “all other things being equal”

is that where Hj is a false hypothesis (and so c1(Hj) > c2(Hj)), for all k 6= j

there is some real number, α, such that c1(Hk) = αc2(Hk). Intuitively, we

can think of (M3) as saying the following. Suppose that c2 is generated from

c1 by taking credence from a false hypothesis that c1 gives positive credence

to and redistributing it to the rest of the hypotheses preserving the ratios

between these hypotheses that c1 encodes. In that case, (M3) says that c2

is epistemically better than c1.

Of note is the following. Suppose that, as above, Hj is the false hy-

pothesis, and that c1(Hj) > c2(Hj) = 0. And suppose, too, that all else

is equal between c1 and c2 in the sense of (M3). Then it follows that c2

is the credence function that would result from conditionalizing9 c1 on the

evidence Hj .
10,11 So, (M3) entails that when one conditionalizes on the ev-

idence Hj when Hj is false, the resulting credence function is epistemically

better than the initial credence function, where in this context ‘epistemically

better than’ is to be understood in terms of greater accuracy.

Fallis & Lewis give an example of how the Partition-based Brier Score

9If c1 is my credence function now and I receive evidence E (and nothing else), I condi-
tionalize iff my next credence function, c2, satisfies: c2(X) = c1(X|E), for all propositions
X over which c2 and c1 are defined.

10Here and throughout I use X to refer to the truth-functional negation of X.
11Proof: Since the Hi are mutually exclusive and exhaustive, Hj is equivalent to∨
i6=j Hi. Thus, c2 is the credence function that would result from c1 upon learn-

ing Hj just in case c2(Hi) = c1(Hi|
∨

i 6=j Hi). The right-hand side of this is equal to
c1(Hi ∧ (

∨
i 6=j Hi))/c1(

∨
i6=j Hi), which is equal to c1(Hi)/c1(

∨
i 6=j Hi) for all i 6= j. Thus,

for all i 6= j, c1(Hi) = αc2(Hi) with α = 1/c1(
∨

i 6=j Hi). Further, if c2(Hj) = 0, then
this is the only such α that also ensures that c2(

∨
i 6=j Hi) = 1 as it must if c2 is to be a

probability function.
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violates (M3), which plays a role in why they think (M3) is a good constraint.

Here’s the example:

Case 1: Suppose there are three mutually exclusive and exhaustive hy-

potheses: H1, H2, and H3. Suppose H1 is true and consider the following

two credence functions:

H1 H2 H3

c1 1/4 1/2 1/4

c2 1/3 2/3 0

Fallis & Lewis note that according to the Partition-based Brier Score, c1 is

more accurate than c2, which is a violation of (M3). They further argue

that we can see that (M3) is correct here. For notice that c2 is exactly the

credence function you would arrive at if you initially had credence function

c1, learned that H3 was false, and conditionalized. This transition, they say,

corresponds to a scientifically-respectable kind of inference: an “elimination

experiment”. An elimination experiment occurs when one gets evidence that

definitively rules out a false hypotheses and provides no information about

the other hypotheses. According to Fallis & Lewis, when one updates one’s

credence function in response to an elimination experiment, one has made

an epistemic improvement. But the partition-based Brier score denies this,

since it says that the accuracy of c2 is less than that of c1. They write:

. . . defenders of the Brier rule would need to explain why simply

eliminating a false hypothesis would decrease actual epistemic

utility. In other words, they need to have a story about what is

epistemically bad about ‘elimination experiments’. (p. 9)

This, then, is their argument: the partition-based Brier Score violates (M3),

and we can see this is mistaken by considering elimination experiments.
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4 Response to Fallis & Lewis

One might claim that Fallis & Lewis’s argument is flawed because it asks

us to judge the transition from c1 to c2 by looking at the actual accuracy

scores of these credence functions. But, goes the objection, this is unfair,

since the agent making the transition doesn’t have the information about

which hypothesis is true. Thus, judgments about the appropriateness of a

transition from one credence function to another cannot dictate whether the

one credence function is in fact more accurate than the other.

It is important to see that this doesn’t undermine Fallis & Lewis’s ar-

gument. For if the Partition-based Brier Score really is the measure of

accuracy, then there is a question we can ask from a third-personal view:

given that H1 is in fact true, and given that an agent changes from c1 to

c2, has the agent in fact made an accuracy improvement? We can ask this

question while acknowledging that it is a different question from the ques-

tion of whether the agent herself is reasonable in making the transition. Our

measure of accuracy needs to give the right answer to such questions.

That said, I think there is still a flaw in Fallis & Lewis’s argument. As

noted, (M3) entails that when one conditionalizes on the evidence Hj when

Hj is false, the resulting credence function is more accurate than the initial

credence function. But this is not always the case. To see the basic worry,

consider the following example that doesn’t involve credences but just all-

or-nothing beliefs. Suppose that it actually is Monday and I believe truly:

“It is Monday or Tuesday”. In addition, I hold many false beliefs of the

form “If it is Monday then X” where X is false. I subsequently learn the

true proposition “It is not Tuesday”. This leads me to revise my beliefs

so that I believe it is Monday and believe the various Xs. I claim that

in such a situation I haven’t made an epistemic improvement, even though
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I’ve definitively ruled out a false hypothesis and then updated. Why have

I not made an improvement? Because the proposition “It is not Tuesday”

functions as misleading evidence for me: it is a true proposition that when

learned, leads me to infer and believe many false propositions.

We can now adapt a case of misleading evidence to a credal context to

see that (M3) is not in general true:

Case 2: Suppose there are three propositions an agent cares about—A,B,

and C—and thus eight mutually exclusive and exhaustive hypotheses. Sup-

pose that, in fact, all of A, B, and C are true. Thus, what I have called H1

in the diagram below is in fact the true hypothesis. Consider an agent with

the following initial assignment of credences to hypotheses:

H1 H2 H3 H4 H5 H6 H7 H8

ABC ABC ABC ABC ABC ABC ABC ABC

0.003 0.003 0.003 0.19 0.8 0 0 0

If we let c1 be the credence function encoding this distribution, here are the

credences in the true propositions that the agent has:

c1(A) = 0.2 c1(B) = 0.806 c1(C) = 0.806

Now, suppose that the agent learns that A is true. If the agent condition-

alizes, then he removes all credence from H5 and assigns it to H1-H4 in such

a way that the ratios between the credences assigned to H1-H4 remain the

same. This results in the following distribution of credence to hypotheses:
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H1 H2 H3 H4 H5 H6 H7 H8

ABC ABC ABC ABC ABC ABC ABC ABC

0.016 0.016 0.016 0.95 0 0 0 0

If we let c2 be the agent’s new credence function encoding this distribution,

here are the credences in the true propositions:

c2(A) = 1 c2(B) = 0.03 c2(C) = 0.03

Notice that c2 assigns the false hypothesis, H5, a lower credence than

does c1, but other than this all else is equal, in the sense of (M3). Thus,

Fallis & Lewis have to maintain, in line with (M3), that c2 is epistemically

better than c1.

But this is mistaken. The agent was initially very inaccurate about A

but very accurate about B and C. Upon changing credences, the agent is

perfectly accurate about A but almost perfectly inaccurate about both B

and C. That is a bad trade. A in this scenario is misleading evidence: evi-

dence that, while true, leads one to greater inaccuracy about other matters.

Looked at in this way, the epistemic value of the initial credence function,

c1, should be greater than the epistemic value of the updated credence func-

tion, c2. So, (M3) is false and in this situation the Partition-based Brier

Score gives the correct verdict.

Fallis & Lewis do consider the objection that when one gets true but

misleading evidence one doesn’t thereby improve one’s credence function:

Admittedly, the results of experiments are sometimes mislead-

ing, such that actual epistemic utility goes down even though
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expected epistemic utility goes up. But there is nothing at all

misleading about a result that definitively eliminates a false hy-

pothesis (and that has no other effect on one’s cognitive state).

(p. 584)

But what we’ve seen here is that the evidence itself can be accurate (H5

really is false), but it can still point in a misleading direction. By focusing

on generic mutually exclusive and exhaustive hypotheses, one can miss ways

that certain hypotheses, while false, are closer to the truth than others.

That is, one can miss the phenomenon of verisimilitude. In the case just

given, although H5 is false, it gets things right with respect to propositions

B and C. Given the remaining distribution of credences, it looks like the

epistemic state that retains credence in the “mostly true” H5 is better than

the epistemic state that shifts the bulk of this credence to the “mostly false”

H4.

Despite this, one might think (M3) still seems true. Note, however, that

there are principles similar to (M3) that are true. For instance, if c2 is the

credence function you get from removing credence from a false hypothesis

that c1 gives credence to and distributing that credence to the true hypothe-

sis, then c2 is more accurate than c1. That principle is true (it also, however,

doesn’t distinguish between the Brier Score and any other proper score). So,

we can reject (M3) while recognizing why it seems plausible.

Case 2 does more than neutralize the (M3)-based argument against the

Partition-based Brier Score, however. It also demonstrates a problem with

the scoring rule that Fallis & Lewis champion: the Partition-based Loga-

rithmic Score, L. As Fallis & Lewis note (and which is easily proved), if c2

gives the true hypothesis a greater credence than does c1, then the Partition-

based Logarithmic Score assigns c2 greater epistemic value than it does c1.
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That is, if the Partition-based Logarithmic Score is the correct measure of

accuracy, then (M3) is true. So, Case 2 shows that (M3) is false and also

rules out the Partition-based Logarithmic Score.

5 Problems for the Partition-based Brier Score

Despite this, it is not smooth sailing for the Partition-based Brier Score.

Even though it seems to get the correct verdict in Case 2, it does not get

the right result in a related case:

Case 3: Keep the formal details of Case 2 the same, including that the Hi

are generated from propositions A, B, and C, but suppose that H2 is now

the true state of the world. The Partition-based Brier Score gives both c1

and c2 the same scores as it did in Case 2, so we must say that c1 is more

accurate than c2. But in this case, that verdict is mistaken. This can be

seen by looking at the credences in the true propositions (which are, in this

case, A,B, and C):

c1(A) = 0.2 c1(B) = 0.193 c1(C) = 0.806

c2(A) = 1 c2(B) = 0.96 c2(C) = 0.03

To the extent that one agrees that c1 is more accurate than c2 in Case 2,

one seems compelled to say that c2 is more accurate than c1 in this case.

But then the Partition-based Brier Score cannot be correct since it gives the

opposite verdict.
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6 Solution: Weighted Proposition-based Scores

Cases 2 and 3, I believe, show problems for (M3) as well as the two partition-

based scores we’ve considered. But they also suggests a remedy: if partition-

based scores are missing facts about hypotheses that are closer to the truth

than others, then we need to make our scores sensitive to verisimilitude.

The natural way to do so is to shift to a proposition-based score. For, the

idea goes, a proposition-based score is going to be able to “see” that H5 is

closer to H1 than H4 in Case 2.

The natural way to pursue this is to turn to a proposition-based score

that scores each proposition in an entire algebra of propositions. That is,

we score the credence the agent has in each proposition in a set of propo-

sitions closed under negation and disjunction. However, as Graham Oddie

(forthcoming) points out, a complete algebra of propositions doesn’t allow

us to track verisimilitude as we’d like. This is rather surprising, but can be

seen with a simple example consisting of two atomic propositions, A and

B. Intuitively, AB is closer than AB to AB. But if we look at the entire

algebra of propositions generated by A and B, we get that they agree with

AB about the same number of propositions. For AB and AB agree with

each other about the truth of three propositions: A, A∨B, A∨B. But AB

and AB agree with each other about the truth of three propositions, too:

A ∨B, A ∨B, A↔ B.

If we want to be sensitive to verisimilitude, then, we will have to privilege

certain propositions. Our intuitive sense that AB is closer than AB to AB is

plausibly the result of us caring in particular about the atomic propositions

A, B, and their negations. If we cared especially about getting biconditionals

correct, for instance, AB may appear closer than AB to AB.

In light of this, I propose that the correct way to measure accuracy is with
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a proposition-based proper score, where the score for certain propositions

are weighted more heavily than others. More carefully, let s(vw(X), c(X))

be a local, strictly proper score. Let F be the set of propositions to which

the credence function c assigns credence. Let w be a possible world defined

as finely grained as the propositions in F allow. Finally, let λ(X) be a

weighting function that assigns propositions in F a weight.12 Then, the

appropriate score to use is:

S(w, c) =
∑

X∈F λ(X)s(vw(X), c(X))

Notice that this is a schema, not a single score. You get a definite score only

after supplying a local score, s, and a weighting function, λ. I’ll refer to this

proposal as the weighted score proposal and I’ll refer to, e.g., the specific

instance of such a score that uses the local Brier score as the Weighted

Brier Score.

Suppose, then, that in Cases 2 and 3 we use a λ that gives most of the

weight to A, B, C, and their negations. Then, both the Weighted Brier and

Weighted Logarithmic Scores give the correct verdict: c1 is better than c2

in Case 2, and the opposite in Case 3.

How, on the weighted score proposal, do we determine which propositions

are most heavily weighted? In many cases it is natural to focus on the atomic

propositions and their negations. But it is certainly possible for there to be

situations where either the agent or those who are scoring the agent have

other propositions that are of interest. I propose that the weighting of

propositions is fixed by these interests.13 Much more could be said about

how propositions are appropriately weighted, but if we hope to capture the

12More on how to assign these weights shortly.
13If one thinks that there are objective facts about which propositions are most im-

portant in inquiry—perhaps in light of explanatory value—one could build this into the
weighting function, though I don’t assume that here. See Pérez Carballo (forthcoming)
for some thoughts on this.
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phenomenon of verisimilitude, some such weightings are needed.

To get a feel for this proposal, consider an example. Suppose that A is

the proposition that it will rain this evening and B is the proposition that it

will be windy this evening, and that in fact it will be both rainy and windy.

Initially, a forecaster assigns equal probabilities (0.3) to the false hypotheses.

The remainder of her credence is given to the (true) hypothesis that it will

be both rainy and windy. She subsequently revises her opinion to eliminate

her credence in no rain and no wind. That is, we have the following case:

Case 4:

AB AB AB AB

c1 0.1 0.3 0.3 0.3

c2 0.1429 0.4286 0.4286 0

Has the forecaster improved her accuracy? If what we care about are the

propositions A, B, and their negations, then it looks like she has increased

in accuracy. She’s gone from a credence of 0.4 in each true proposition to

a credence of approximately 0.57. And, when A, B, and their negations

are weighted most heavily by λ, both the Weighted Brier and Weighted

Logarithmic scores agree. And such a verdict makes sense. Credence is taken

from the wholly false AB and distributed to the two other false hypotheses

that are both partially accurate.

But suppose the forecaster really cares about not wrongly claiming that

only one of rain or wind will occur, when in fact both will. Then, we may not

see the transition from c1 to c2 as an improvement. For now the forecaster

has become very confident that A ↔ B is false. If we give heaviest weight

to this biconditional and its negation, we get the opposite result: c2 is no
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longer an accuracy improvement over c1. Again, this makes sense. In such

a scenario, AB is closer to AB than the other hypotheses.14

7 Proximity and Verisimilitude

Graham Oddie (forthcoming), however, attempts to show that no proper

score—whether weighted or not—can account for verisimilitude. If he’s

right, the weighted score proposal is mistaken. Oddie’s argument relies

on a proof that no proper score can respect a constraint he calls Proximity.

Proximity says that if a credence function distributes some credence to a set

of false mutually exclusive hypotheses, then if you redistribute the credence

in these false hypotheses so that it is all concentrated on a false hypothesis

that is closest to the truth, you do not increase your inaccuracy.

Suppose, for the sake of argument, that both AB and AB are closer to

AB than is AB. Proximity would say that the following transition must be

an improvement in accuracy.

Case 5:

AB AB AB AB

c1 0 0.3 0.3 0.3

c2 0 1 0 0

This is because we take the credence in false hypotheses, and put it all into

AB, which is one of the false hypotheses closest to the truth. However,

the Weighted Brier and Weighted Logarithmic scores say that c1 is more

accurate than c2 even when the atomic propositions are the only propositions

14One might wonder what happens when the forecaster cares about all propositions
equally. This is addressed in Section 8.
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with positive weight. So, they violate Proximity. Oddie takes this to show

that no proper score can respect insights concerning verisimilitude and hence

that no proper score can genuinely measure accuracy.15

In response, I claim that Proximity is false: not every way of moving

credence from false hypotheses to a false hypothesis that is closest to the

truth constitutes an accuracy improvement. For example, in Case 5 I claim

that Proximity is false because c2 is not more accurate than c1. To be clear:

this is to maintain that while verisimilitude is one aspect of accuracy, it is

not the sole aspect.

What can be said in favor of this response? Note first that Case 5 is

importantly different than Case 4. In Case 4, accuracy is improved with

respect to both A and B when transitioning from c1 to c2. In Case 5, in

contrast, accuracy is increased with respect to A, but decreased with respect

to B.

More important than this, however, is the fact that c2 expresses extreme

confidence in one particular false hypothesis, while c1 does not. Suppose,

again, that A is the proposition that it will rain and B the proposition that

it will be windy. In Case 5, our forecaster initially assigns equal credence

(1/3) to it being rainy but not windy, to it being windy but not rainy, and

to it being neither windy nor rainy. She subsequently revises her opinion to

be completely confident that it will be rainy and not windy. She has not

improved in accuracy because she has overcommitted to a specific, false,

hypothesis. Better to spread one’s credence out among the false hypotheses,

or at least among AB and AB.16 This mitigates the fact that she has, in a

15Note, too, that this can be seen as simply an extreme version of an elimination exper-
iment, the only difference being that in this case, the true hypothesis is given no credence.
And (M3)—which I’ve already argued is false—says that c2 is more accurate than c1.

16And note, that if credence is removed from AB and distributed equally to AB and
AB, the Weighted Brier and Weighted Logarithmic scores agree that the transition is an
accuracy improvement.
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sense, moved closer to the truth.

One way to motivate this picture of accuracy is to draw an analogy with

all-or-nothing belief. While we must be cautious in identifying high credence

with all-or-nothing belief, c2 is analogous the all-or-nothing belief state of

someone who fully believes that it will rain and not be windy. On the other

hand, c1 is analogous to the more cautious all-or-nothing belief state of

someone who withholds judgment between the three false hypotheses. Both

make a mistake, of course, but it is plausible that c2’s mistake is worse.

And there is a further argument in favor of the claim that distributing

too much credence to one false hypothesis is bad for overall accuracy.17 This

argument appeals to two ideals: it is better for credence functions to (1) as-

sign more credence to truths and (2) less credence to falsehoods. Suppose

we’re only dealing with a set of mutually exclusive and exhaustive hypothe-

ses. The credence function that assigns credence 1 to the true hypothesis is

perfectly satisfying both these ideals. Now, consider two different credence

functions. Both assign credence 0 to the true hypothesis, but the first assigns

credence 1 to some particular false hypothesis, while the second distributes

this credence evenly among all the false hypotheses. The first credence func-

tion is doing poorly with respect to ideal 1 (assigning lots of credence to the

truth) and it is doing poorly with respect to ideal 2 (assigning less credence

to falsehoods). For it assigns credence 1 to a falsehood. The second credence

function is, like the first, doing poorly with respect to ideal 1. But it is doing

better with respect to ideal 2 (assigning less credence to falsehoods). Each

17In a blog post on M-Phi Knab & Schoenfield (2015, March 12) defend a principle they
call Falsity Distributions Don’t Matter: ”For any partition of theories: t1, . . . , tn,
a probabilistic agent’s accuracy with respect to this partition at world w should be de-
termined solely by the amount of credence she invests in the true theory at w, and the
amount of credence she invests in false theories at w. The way she distributes her cre-
dences amongst the false theories at w shouldn’t affect her accuracy.” What I say here
can be seen as a reason to doubt this principle.
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falsehood is assigned very little credence. So, it is perfectly reasonable to

see the second credence function as more accurate than the first.

Thus, I maintain that the weighted accuracy proposal can capture facts

about verisimilitude when it should, but the fact that it violates Proximity

is no strike against it as a proposal about how to properly measure accuracy.

8 When Only the Partition Matters

So far we’ve seen that (M3) fails in scenarios where some hypotheses are

closer to the truth than others. But what about contexts where verisimili-

tude is not a factor? These will be cases where the only propositions that

matter are the mutually exclusive and exhaustive hypotheses themselves.

One might think that while (M3) has counterexamples when verisimilitude

is a factor, violations of it are still objectionable in cases where verisimilitude

is not a factor.

One way to make this objection vivid is to look back at Fallis & Lewis’s

initial case against the Brier Score (Case 1). When verisimilitude is relevant,

the defender of the weighted score proposal has a clear thing to say: the case

is under-described, since we don’t have any information about the proposi-

tions that generate the three hypotheses. When we fill in such details, we

get plausible results.18

18For example, here are two different ways we could fill in the details:

Case 1.1:

AB AB AB AB

c1 1/4 1/2 0 1/4
c2 1/3 2/3 0 0

Case 1.2:

AB AB AB AB

c1 1/4 1/2 1/4 0
c2 1/3 2/3 0 0
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But the objection now is what to say about Case 1 when only the mutu-

ally exclusive and exhaustive hypotheses are given positive weight by λ. We

saw earlier that the partition-based Brier score says that c2 is less accurate

than c1 in Case 1 and so the Weighted Brier score is going to say the same

thing when we have such a λ. And though the Weighted Logarithmic score

doesn’t give that result in Case 1, it does give a similar result in a related

case.

Case 1∗:

H1 H2 H3

c1 0.2 0.6 0.2

c2 0.25 0.75 0

The objection, then, is that though (M3) is false in general, it is nev-

ertheless true when none of the (false) mutually exclusive and exhaustive

hypotheses are closer to the truth than any others. But the weighted score

proposal says that (M3) is false even in some such cases.19

The response to this objection builds off the response to Oddie’s Prox-

imity objection. I argued that a credence function can decrease in accuracy

by becoming extremely confident in one particular false hypothesis. This,

I claim, is what happens in the situations depicted in Cases 1 and 1∗: too

much credence is given to one particular false hypothesis. So even though

c2 assigns less overall credence to the set of false hypotheses, it is worse

If λ assigns the atomic propositions (and their negations) heavy weights, then, in Case
1.1, we get that c2 is an improvement over c1 according to both the Weighted Brier and
Weighted Logarithmic scores. And in Case 1.2, we get that c2 is not an improvement over
c1. These are plausible verdicts when the atomic propositions are what matter.

19In an unpublished paper, (Lewis & Fallis, 2016, pp. 13-4), prove that any proposition-
based proper score that assigns weights only to the mutually exclusive and exhaustive
hypotheses, will face these sorts of (M3) violations.
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than c1 because it invests a large amount of credence in one particular false

hypothesis.20

Importantly, such a view sits comfortably with the idea that accuracy

is the sole epistemic value. Accuracy, on this picture, depends not only on

how much total credence is given to the true and the false, but also on how

credence is distributed amongst the false hypotheses. But it is still accuracy

alone that is of epistemic value. Given this picture of accuracy, we should

expect there to be (M3) violations, even in cases where verisimilitude is not

a factor.

I have just claimed that violations of (M3) are not objectionable when

too much credence is given to one particular false hypothesis. Different

proper scores will differ over how much is “too much”. Cases 1 and Case 1∗

show us this. The Weighted Logarithmic score says that c2 is more accurate

than c1 in Case 1, but not in Case 1∗. The Weighted Brier score says that c2

is less accurate than c1 in both cases. So, different scores disagree about how

extreme the credence must be in the particular false hypothesis before we

get acceptable violations of (M3). But that disagreement is one of degree

and not of kind. Once we think there are acceptable (M3) violations—

even without verisimilitude—then where exactly to draw the line is a subtle

matter. That is why I advocate for some weighted proper score, but offer no

argument for one particular proper score such as the Weighted Brier score

or the Weighted Logarithmic score.

20For instance, in Case 1∗ c1 assigns to false hypotheses a total of 0.8 credence and c2
assigns to false hypotheses a total of 0.75 credence. But since c2 gives all of this to one
particular hypothesis (H2), it is worse than c1.
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9 Against Pettigrew’s argument for the Brier score

In recent work, Richard Pettigrew (2016) has gone further and argued in

favor of the Proposition-based Brier Score over any alternative score.21 In

this section I explain why I don’t think this argument works. We have a

reason to go for a weighted score, but not necessarily the Brier score. To see

Pettigrew’s argument in favor of the Proposition-based Brier Score we need

to first see the relationship between scoring rules and additive Bregman

divergences. In general, a divergence, D, is a function on two vectors in

[0, 1]n, x = (x1, . . . , xn) and y = (y1, . . . , yn) such that D(x,y) ≥ 0 for

all x,y ∈ [0, 1]n. More intuitively, in the context of credence functions, a

divergence is a measure of the difference between two credence functions.

A certain subclass of divergences are the additive Bregman divergences.22

As Pettigrew shows, drawing on work by Predd et al. (2009), for every ad-

ditive scoring rule, S, that meets several conditions23 there is an associated

additive Bregman divergence, D such that S(w, c) = D(vw, c) where vw is

the omniscient credence function at w.24 Additive Bregman divergences are

hence more general than scoring rules, since the scoring rule gives you a mea-

sure of the difference between a credence function and the truth-values at

a world whereas a divergence gives you a measure of the difference between

two arbitrary credence functions.

Pettigrew’s argument in favor of the Brier score, depends on an impor-

tant feature of the divergence associated with the Brier score: it is the sole

21Pettigrew (2016) also does not consider weighted scores of the sort I advocate for, but
as I note in the section below, most of his arguments are compatible with such weightings.

22For details, see Pettigrew (2016, pp. 84-5).
23These conditions are: Alethic Vindication, Perfectionism, Divergence Additivity, Di-

vergence Continuity, and Decomposition. For the definitions, see chapter 4 of Pettigrew
(2016).

24The omniscient credence function at w is just the credence function that assigns all
truths at w credence 1 and all falsehoods at w credence 0.
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symmetric divergence. That is, for the Brier score and only the Brier score,

it is true that the divergence from c2 to c1 is the same as the divergence

from c1 to c2. Here is what Pettigrew says:

We have a strong intuition that the inaccuracy of an agent’s cre-

dence function at a world is the distance between that credence

function and the ideal credence function at that world. But we

have no strong intuition that this distance must be the distance

from the ideal credence function to the agent’s credence function

rather than the distance to the ideal credence function from the

agent’s credence function; nor have we a strong intuition that

it is the latter rather than the former. But if there were non-

symmetric divergences that gave rise to measures of inaccuracy,

we would expect that we would have intuitions about this latter

question, since, for at least some accounts of the ideal credence

function at a world and for some agents, this would make a dif-

ference to the inaccuracies to which such a divergence gives rise.

(Pettigrew, 2016, p. 67)

Pettigrew maintains that we don’t have the intuition that it is distance to the

omniscient credence function or distance from the omniscient credence func-

tion that matters for accuracy. But if the true accuracy score corresponded

to a non-symmetric divergence, we would have such intuitions. Hence, the

true score does not correspond to a non-symmetric divergence.

If sound, this argument rules out every score except the Proposition-

based Brier Score. But I believe it is unsound, because there is no reason to

think the conditional premise is true. If we had strong intuitions that diver-

gences must be symmetric, this might tell against scores like the Logarithmic

Score, but the mere lack of intuitions about this is not probative.
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What’s more, I think a positive story can be given for why a non-

symmetric divergence may be appropriate. This story doesn’t give a reason

to favor a non-symmetric divergence, but I think it does undermine any ad-

vantage a symmetric divergence has. The key is to note that when we score

the accuracy of a credence function, we are really comparing two different

kinds of things: a doxastic state (a credence function) and the truth (a

set of truth-values). This difference is obscured if we think of scoring rules

as comparing a credence function with an omniscient credence function (as

Pettigrew does). Of course, formally, things come out the same no matter

which way one goes since vw(x) takes the same value as the omniscient cre-

dence function at w. But if the things being compared are different in kind,

this makes it unsurprising that a non-symmetric divergence underwrites our

inaccuracy measure. For to ask how far a credence function is to the truth is

different than asking how far an omniscient credence function is to a world

with partial truths.

An example may help to illustrate this difference. Suppose we have a

credence function, c, defined on F = {P, P}, and suppose c(P ) = 0.7 and

c(P ) = 0.3. In a world, w? where P is true we can ask:

Q1: How far is c from w??

But here’s a different question. Suppose c? is the omniscient credence func-

tion at w? and so c?(P ) = 1 and c?(P ) = 0. Imagine now a different world,

w where there are partial truths and where the truth-value of P is 0.7 and

the truth-value of P is 0.3. We could ask:

Q2: How far is c? from w?

Symmetric divergences give the same answer to Q1 and Q2. But I don’t

think the questions are the same, nor is there reason to think they should
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receive the same answer. Q1 is asking how accurate a degreed belief state

is that is trying to match a world where propositions are either fully true or

fully false. Q2 is asking how accurate an all-or-nothing belief state is that is

trying to match a world where propositions are partially true and partially

false.

10 Weighted Scores and Accuracy-Based Arguments

The weighted score proposal is that accuracy is measured by a score that

satisfies the schema below:

S(w, c) =
∑

X∈F λ(X)s(vw(X), c(X))

One natural question about this proposal is whether the scores that fit

this schema will still underwrite the accuracy-based arguments for epistemic

norms such as probabilism25 and conditionalization.26 To answer this ques-

tion, first suppose that the weighting function, λ(X), is such that for some

X ∈ F , λ(X) = 0. In that case, certain propositions are completely ignored

by our scoring rule. Thus, credence in those propositions could be set to

absolutely anything—values above 1 or below 0, for instance—without af-

fecting the accuracy score of the credence function. So, if we allow λ(X)

to assign certain propositions zero weight, then we won’t get the accuracy-

based results that rational credence functions must satisfy various epistemic

norms.27

25Probabilism is the claim that every rational credence function is a probability function.
26For representative work in this area, see the citations in footnote 2.
27Here’s a simple example, which shows that we won’t be able to argue for Probabilism

by showing that for every probabilistically incoherent credence function there is a coherent
credence function more accurate than it. Suppose F contains only P and P . Let c1(P ) =
c1(P ) = 1. This function is incoherent, and it is dominated by (among other functions)
c2(P ) = c2(P ) = 0.5 if all propositions are weighted equally. In a world where P is true,
c1 gets a score of 1 and c2 gets a score of 0.5, and likewise in a world where P is true.
But now suppose λ(P ) = 0. c2 no longer dominates c1, since in a world where P is true,
c1 gets a score of 0 and c2, a score of 0.25.
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However, we do get something weaker. Suppose that our weighting func-

tion, λ(X) assigns no propositions a weight of zero. Instead, it assigns the

propositions that we do not care about a very, very low, but still posi-

tive weight. As Pérez Carballo (forthcoming) proves, if s(vw(X), c(X)) is

a strictly proper local score, then
∑

X∈F λ(X)s(vw(X), c(X)) is a strictly

proper global score so long as λ(X) > 0 for all X. Hence, if we weight

propositions in such a way that none are assigned a weight of zero, we get

accuracy-based results for Probabilism (Pettigrew, 2016, Theorem 4.3.4),

the Principal Principle (Pettigrew, 2016, Theorem 10.0.1), and for Plan

Conditionalization (Pettigrew, 2016, Theorem 14.1.1, due to Greaves and

Wallace). The only accuracy-based argument that fails to go through is the

accuracy-based argument for the Principle of Indifference (Pettigrew, 2016,

Theorem 13.1.1). But if certain propositions are more important than oth-

ers, we wouldn’t expect the Principle of Indifference to be true, since it is

worse to be wrong about the more heavily weighted propositions than the

less heavily weighted. Further, when we have a weighting such that G ⊆ F ,

all X ∈ G, λ(X) = n > 0, and where for any Y ∈ F−G, λ(Y ) = 0, we do get

the Principle of Indifference argument going through for the propositions in

G. So this is no objection to using weighted accuracy scores.

11 Conclusion

Fallis & Lewis argue against the Brier score on the basis of principle (M3).

I’ve argued that this principle is false: sometimes conditionalizing on true

information can lead to a less accurate credal state. This is especially clear

in cases of verisimilitude, where you remove all credence from a mostly

true (but false) hypothesis and redistribute it so the bulk of it goes to a

mostly false hypothesis. However, I’ve argued that even in cases where
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verisimilitude is not a factor (M3) is still mistaken. This is because it is

sometimes an overall loss in accuracy when one assigns an extreme amount

of credence to one particular false hypothesis. This helps us respond to

Oddie’s recent objection to proper scoring rules on the basis of their violation

of what he calls Proximity. The kinds of accuracy scores that account for

this are the proposition-based proper scores, among them the proposition-

based Brier and Logarithmic scores. Such accuracy scores are sensitive to

verisimilitude when it is relevant and still underwrite the most interesting

formal results in the accuracy-first program.
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