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T he change in US income inequality over the last 40 years is one of the 
most extensively studied topic in economics. While it is well established that 
earnings and income inequality have increased sharply in the United States 

since the late 1970s, the explanations for the increase remain a matter of debate: 
for some examples in the literature, Goldin and Katz (2007) emphasize changes in 
returns to education; Acemoglu and Autor (2011) discuss the evolution of skills, 
tasks, and technologies; Acemoglu and Restrepo (2020) focus on robotization; and 
Fortin, Lemieux, and Lloyd (2019) consider the contribution of labor market insti-
tutions. No single explanation seems to be able to account for most of the growth in 
inequality. Indeed, the causes of rising inequality may differ across time periods and 
across middle, upper, and extreme upper income groups. 

The purpose of this paper is three-fold. First, it documents key trends in US 
income inequality since the late 1970s, showing how much of the change comes 
from labor and non-labor market income. We will look at males and females sepa-
rately, given the very different evolutions of their labor market participation during 
this time. In the case of non-labor market income, we focus on capital income in the 
form of interests, dividends, and (broadly defined) rental income. The empirical 
analysis is based on data from the March Annual Social and Economic Supplement 
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(ASEC) of the Current Population Survey (CPS) that has been collecting informa-
tion about labor and capital income in a consistent fashion since 1976. To put these 
findings in context, pioneering work based on tax data by Piketty and Saez (2003) 
documents a dramatic increase in the concentration of income at the very top of 
the distribution. This initial evidence indicated that labor earnings were the main 
source of growth in top incomes. But with the labor share falling (Karabarbounis and 
Neiman 2014; Autor et al. 2020) and the continuing accumulation of wealth at the 
very top of the distribution (Saez and Zucman 2016), recent research has suggested 
that non-labor income has been playing an increasingly important role in inequality 
growth at the top (Piketty, Saez, and Zucman 2018). By contrast, evidence on the 
contribution of labor and non-labor income to the growth in income inequality 
among all income earners remains limited.1 

Second, we assess the contribution of key explanatory factors, and in particular, 
education, to the growth in income inequality in the last four decades. While earlier 
research on income inequality using tax data provides excellent quality informa-
tion on incomes at the top of the distribution, it contains limited information on 
the characteristics of tax filers. As a result, it offers little insight on how factors like 
education and occupation—which have been shown to play a major role in the labor 
literature—may also be affecting the distribution of non-labor income. Although 
education only accounts for a modest fraction of the level of earnings dispersion, 
it has been found to play a much larger role in the growth in earnings dispersion 
(Lemieux 2006a; Goldin and Katz 2007; Autor 2014). An important contribution 
of this paper is to study the connection between education and changes in the 
distribution of both labor and capital income. We also show that other explanatory 
factors—occupations, in particular—play a more limited role in inequality growth. 
This finding is consistent with the large literature showing that changes in the 
demand for different tasks, including but not limited to routine tasks, have contrib-
uted to the evolution of the wage distribution over time (for some entry points to 
this literature, see Acemoglu and Autor 2011; Autor and Dorn 2013; Firpo, Fortin, 
and Lemieux 2011; Caines, Hoffmann, and Kambourov 2017; Autor 2019).

Third, we compare the experience of rising US income inequality to other 
advanced economies. Existing studies show that earnings inequality has increased 
in Germany, the United Kingdom, and Italy but remained stable in France. We 
know little, however, about the role of capital income or about the relative contri-
bution of education to inequality in these countries. Contrasting the evolution of 
inequality, and the source of the changes in inequality, in the United States and 
other high-income countries is helpful for understanding the factors behind these 
dramatic changes. In the early sections of this paper, we find that capital income 
has magnified the growth in US earnings inequality over time as the capital to labor 
income ratio disproportionately increased among high-earnings individuals. That 

1 Piketty, Saez, and Zucman (2018) look at the evolution of the share of income going to the bottom 
50 percent and middle 40 percent of the distribution in addition to the top income shares, but there is a 
lot of dispersion within these broad groups that has not been as thoroughly studied.
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said, labor income remains the main driver of inequality over the last 40 years, 
and it clearly would be difficult to slow down income inequality growth without 
addressing the inequality in labor income. We also find that education accounts for 
over half of the growth in US labor and capital income inequality. Growing income 
gaps among different education groups have led to a large expansion in between-
group inequality, while the growing fraction of highly educated workers increased 
inequality because of composition effects. Other factors such as changing occu-
pation premia and composition effects linked to the polarization of employment 
across occupations and space have also been playing a significant role in the growth 
in income inequality. Turning to large European economies, we show that inequality 
has been growing fast in Germany, Italy, and the United Kingdom, though not in 
France. As in the case of the United States, capital income only plays a limited role 
in inequality growth in these countries. Unlike the United States, income disparities 
linked to education is not a major factor in the rise in inequality in Europe, with the 
exception of Germany, where education can account for a substantial, though much 
smaller, part of the rise in income inequality.

Income Inequality Trends for the United States: Data and 
Measurement Issues

Our analysis of the trends in income dispersion in the United States is based on 
the IPUMS files of the March Supplement (ASEC) of the Current Population Survey 
(CPS) for 1976 to 2019, which collects income information for the preceding year 
(1975 to 2018).2 The focus of this paper is on market income exclusive of taxes 
and transfers. The CPS contains information on net self-employment and wage and 
salary income over the reference year.3 We define labor income as the sum of these 
two income sources. In the case of capital income, we combine income from three 
variables in the ASEC CPS: interest income; dividends; and rents, royalties, and 
income from estates or trusts.4

2 For more detail on the IPUMS files, see Flood et al. (2000). Prior to the 1976 survey (income for 1975), 
the ASEC supplement only collected information at the individual level for heads of household. This 
is a major limitation because most female workers were not classified as household heads at the time. 
However, starting the analysis in the mid-1970s is not a significant limitation, given that inequality was 
relatively stable prior to about 1980. 
3 Smith et al. (2019) show that a large fraction of top incomes consists of entrepreneurial income earned 
through pass-through corporations (S-corporations and partnerships). Business owners may receive 
income in the form of wage and salary or business profit. In principle, both of these income sources 
should be captured in our CPS earnings measures that combine wages and salaries and net business 
income from the respondent’s “own business” (what we refer to as self-employment income).
4 Note that the ASEC CPS doesn’t collect data on realized capital gains. This is a limitation, but for our 
present purposes not a major one. Many studies on the distribution of broader concepts of income often 
present results without capital gains (for example, Alvaredo et al. 2013) because of the high volatility of 
such gains over time, which in turn is linked to the fact investors may be strategic in deciding when to 
realize these gains. 
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Although most variables in the IPUMS files are fairly consistent over time, we 
made a few additional adjustments to the income variables, which are discussed in 
detail in the online Appendix, available with this article at the JEP website. Here, we 
briefly discuss two important adjustments.

First, for confidentiality reasons, the Census Bureau does not report incomes 
above a set threshold known as the top code. Between 1976 and 1995, incomes 
above the top code were simply replaced by the value of the top code (for example, 
$99,999 for wage and salary earnings in the late 1980s). Obviously, this made it diffi-
cult to use Census data to look at the top of the income distribution. The top coding 
procedure was improved in the 1996–2010 period by assigning a “replacement value” 
based on the average income of top-coded observations. After 2010, the Census 
Bureau moved to a “rank proximity swapping” procedure where high-income obser-
vations within a given range (above the top code) are swapped with close-by values 
and rounded off. Relative to earlier methods, the technique preserves the distri-
bution above the top code and provides more accurate measures of the income 
distribution. Since then, the Census Bureau has provided swap values for years prior 
to 2011, which we use to keep income data consistent over time.  As discussed in 
the online Appendix, the top earning shares for the top 1 and 10 percent that we 
calculate using the CPS are 9 and 34 percent, respectively, which is very similar to 
the shares found in tax data (see the updated version of the tables and figures from 
Piketty and Saez 2003, available at https://eml.berkeley.edu/~saez/TabFig2018.
xls). 

While this suggests that the Census Bureau’s rank proximity swapping proce-
dure approximates the upper tail of the earnings distribution reasonably well, it 
cannot fully adjust for changes in income data collection over time. As this inconsis-
tency only affects the top 1 percent of earners, we trim that part of the distribution 
to make sure we have comparable measures of inequality over time in the analysis 
presented below. Note that using swap values remains important even when the top 
1 percent is removed, as the fraction of observations with swapped values reaches up 
to 5 percent of the sample in some years.5  We also remove observations with abnor-
mally low average hourly earnings—less than $4 per hour in 2018 dollars—with the 
cut-off more or less corresponding to half of the real value of the minimum wage 
over the 1975–2018 period. 

Second, income items other than earnings can be severely underreported in 
survey data (in this journal, Meyer, Mok, and Sullivan 2015). Rothbaum (2015) shows 
that only about 50 percent of capital income as measured in the national income 

5 The introduction of the computer-based questionnaire for the CPS in 1994 appears to have changed 
the upper tail of the distribution in a way that the Bureau of the Census rank proximity swapping proce-
dure described above cannot fully account for The issue is discussed in detail in the online Appendix, 

available with this paper at the JEP website. Note that most women with swapped values are part of the 
(gender-specific) top 1 percent of earners. In the case of men, however, an average of 3 percent of 
earners—up to 5 percent in some years—have their earnings replaced with swapped values. As such, 
removing the top 1 percent of observations doesn’t mitigate the importance of adjusting earnings using 
the Census Bureau’s swapping procedure.

https://eml.berkeley.edu/~saez/TabFig2018.xls
https://eml.berkeley.edu/~saez/TabFig2018.xls
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and product accounts gets reported in the CPS, in contrast with close to 100 percent 
of wage and salary earnings. Given the large underreporting of capital income, we 
adjust up reported capital income to match the figures from the national income 
and product accounts.6 Note that although household members often share capital 
investments and their proceeds, the CPS collects information about capital income 
at the individual level, leaving it up to respondents to divide this source of income 
among themselves. 

We focus our analysis on individuals from ages 25–64 who are working full-
time/full-year in the reference year. The rationale for these sample restrictions is 
that we want to see how capital income contributes to overall income inequality for 
individuals with substantial labor income and who have been the focus of most of 
the earnings inequality literature. Many of the individuals under the age of 25 are 
still in school, and those who aren’t haven’t had much opportunity to accumulate 
savings. Likewise, most individuals over the age of 64 are retired, and only a modest 
share of their income comes from labor income. Given the substantially different 
trends in labor force participation, average earnings, and earnings dispersion for 
men and women, we follow the literature’s typical practice of conducting the anal-
ysis in parallel for these two groups throughout the paper. Summary statistics for the 
sample, both broken by decade and pooled over all years from 1975 to 2018 using 
the CPS data, are available in the online Appendix. 

As our measure of inequality, we use the standard deviation of the log of 
income, which is a common metric in this literature. Some studies of inequality use 
the “coefficient of variation,” which is the standard deviation divided by the mean. 
However, the distribution of income is of course a variable that is bounded by zero 
on the left and skewed to the right at the top levels. As a result, the mean will be 
well above the median. By using the log of income, our measure gives appropriately 
greater weight to lower and intermediate levels of income. 

Inequality in the United States: Labor versus Capital Income

We take a first look at the contribution of both labor and capital income to 
overall inequality by contrasting the evolution of the standard deviation of log 
labor income and log total income in Figure 1. The gap between the two lines 

6 This adjustment is similar to the approach used by Piketty, Saez and Zucman (2018) to distribute some 
components of national income to households using a scaled-up version of survey self-reports. The 
adjustment factors we use are the inverse of underreporting ratios reported in Rothbaum (2015) for 
2007–12: 1/.675 for interest income, 1/.695 for dividends, and 1/.274 for rents, royalties, and income 
from estates or trusts. While underreporting of capital income may be more severe in the upper part of 
the distribution, adjustments based on comparison of survey responses to aggregate figures—like the one 
used by Rothbaum (2015)—cannot be used to adjust for this potentially important issue. In the online 

Appendix, available with this paper at the JEP website, we also report inequality trends without this 
adjustment and discuss other changes in the survey instrument that may have improved the reporting of 
capital income in recent years.
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represents the contribution of capital income. As mentioned above, these trends 
are computed for full-time/full-year workers, with the upper 1 percent of the distri-
bution winsorized (that is, trimmed) to maintain data comparability over time. 
The figures are smoothed using a three-year moving average to facilitate the visual 
display. Although the three sources of capital income are combined together in this 
analysis, we note that most of the volatility in capital income is driven by interest and 
dividend income, with rental income remaining relatively stable over time. As there 
is no clear trend in the relative contributions of each source of capital income to 
total income inequality, we combine the three sources of capital income throughout 
the analysis.

In Figure 1, panel A shows that after growing modestly in the late 1970s, earn-
ings inequality among men grew rapidly in the 1980s and 1990s. Interestingly, 
inequality then grew at a much slower pace after 2000. These trends are similar to 
those reported in earlier work (for example, Acemoglu and Autor 2011). Consistent 
with research based on tax data (for example, Piketty, Saez, and Zucman 2018), 
while capital income represents a modest fraction of total income, its distribution 
is substantially more skewed than the distribution of labor income.7 Adding capital 

7 For our sample as a whole, men and women combined, close to 90 percent of capital income is concen-
trated among the top 10 percent, with 43 percent going to the top 1 percent. This is similar to findings 
from the tax data. For example, Saez and Zucman (2016) show that about 90 percent of wealth (or 
capital income) is held by the top 10 percent, and around 50 percent by the top 1 percent. 

Figure 1 
Standard Deviation of Log Labor and Total Income

Source: Authors’ calculations based on microdata from the March Annual Social and Economic 
Supplement (ASEC) of the Current Population Survey.  
Note: The standard deviations are computed for a sample of full-time/full-year workers age 25-64 earning 
at least $4 per hour in 2018 dollars. The top 1 percent of the distribution has been trimmed because of 
inconsistencies in the way earnings at the very top have been collected over time. Labor income consists 
of net self-employment and wage and salary income. Total income is the sum of labor and capital income 
(interest income, dividends, and rents). See text for more detail. 
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income to labor income leads to a higher level of dispersion for overall income (the 
blue line). Moreover, the contribution of capital income to the standard deviation 
of total income—the difference between the two curves in Figure 1—grows notice-
ably over time. The difference in standard deviations—with and without capital 
income included—grows from 0.014 in 1975–79 to 0.032 in 2014–18. The timing of 
changes in total income inequality is also substantially different from the ones for 
labor income only. The growth in total income inequality in the 1980s and 1990s is 
almost entirely driven by the increase in labor income inequality. By contrast, after 
year 2000, capital income plays an increasingly important role in overall inequality. 
These trends are qualitatively similar to studies of top incomes that have shown that 
while the increase in top shares was almost entirely driven by labor income in the 
1980s and 1990s (as in Piketty and Saez 2003), capital income has been playing a 
more important role in recent years (as in Piketty, Saez, and Zucman 2018).

While trends for women shown in Figure 1b are generally similar to those for 
men, a few differences are worth noting. First, income inequality among women is 
completely flat in the late 1970s. A natural explanation for this difference relative to 
men is the minimum wage that was increasing during this period and had a larger 
impact on the inequality for women relative to men (DiNardo, Fortin, and Lemieux 
1996; Lee 1999). Second, unlike in the case of men, earnings inequality among 
women keeps growing steadily after 2000. A possible explanation for this differ-
ence that we explore in the next section is that as the fraction of full-time/full-year 
women has been growing substantially over time, the composition of this group has 
also been changing in a way that resulted in more inequality. 

Although we follow the literature in conducting the analysis separately for men 
and women, we note that inequality for men and women combined did not grow as 
fast as for men and women considered separately. To a great extent, this was driven 
by the decline over time in the between-group component of inequality linked to 
the gender gap.8

We further decompose the gap between labor income inequality and total 
income inequality into two components. The first is the idiosyncratic component, 
which represents the fact that individuals may have differing levels of capital income, 
even if they have the same labor income. The second is a labor-correlated component, 
which measures the extent to which total income inequality is magnified by the fact 
that higher-earning individuals tend to receive a larger share of total income from 
capital sources because higher-earning individuals would be expected to hold greater 
wealth, and thus, receive a higher share of their total income from capital sources.9 

8 This is illustrated in online Appendix Figure A1, available with this paper at the JEP website, which 
shows that the standard deviation of log total income grew by 0.12 between 1975 and 2018 for men and 
women combined, compared to 0.17 for men and 0.18 for women considered separately. However, we 
don’t present results for men and women combined in the remainder of the paper, as doing so would 
complicate the decomposition exercises where we would have to keep track of how the different factors 
like education, occupations, parental roles, and others also affect the gender gap.
9 Define total income Y as the sum of labor (YL) and capital income (YC). Log total income can be written 
as:
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The evolution of these two components are shown in Figure 2. As in Figure 1, 
it is clear that the growing dispersion in labor income accounts for most of the 
increase in the variance of total income. At the same time, for both men (Figure 2, 
panel A) and women (Figure 2, panel B), the importance of the variance in the 
labor-correlated component of capital income increases steadily over time. This 
is directionally consistent with the finding of Piketty, Saez, and Zucman (2018) 
that capital income as a share of total income has disproportionately increased 
at the very top of the distribution. There is also some modest growth that is less 
pronounced in the idiosyncratic variation in capital income, indicating that capital 
income is getting more unevenly distributed conditional on labor income. Finally, 
the figure shows that labor income inequality is the main driver of the growth 
in the variance of total income until about 2000, at which point capital income 
becomes increasingly more important in accounting for total income inequality 
growth. For instance, after 2000, in the case of men, the idiosyncratic and labor-
correlated components of capital income variance account for 15 and 24 percent of 
the growth in total income inequality, respectively.

In short, the growth in capital income inequality has been a nontrivial contrib-
utor to the growth in total income inequality over the last two decades, primarily 
driven by the fact that high-earnings individuals increasingly have a higher frac-
tion of their incomes coming from capital income. This pattern of inequality 
change in the overall population of earners mirrors the findings of Piketty, Saez, 
and Zucman (2018) for the very top percentiles of earners, which indicates that 
the contribution of capital income in growing inequality extends beyond the very 
top of the distribution.

That said, the perspective provided by Figures 1 and 2 makes clear that the long-
run growth in total income inequality over the past several decades is driven primarily 
by growth in the labor income inequality. In fact, using the trends in labor income 
inequality to proxy for the magnitude of the growth in total income inequality does 
a reasonable job, whereas the same could not be said about the trends in capital 
income inequality. With this as context, we take advantage of the rich set of indi-
vidual characteristics available in the CPS data to look at the contribution of various 
factors, and education in particular, in the growth of total income inequality.

log(Y) = log(YL + YC) = log(YL) + log(1 + r) ≈ log(YL) + r,

where r = YC/YL is the ratio of capital to labor income, and we use the fact that log(1 + r) ≈ r  for small 
values of r. To simplify the exposition, we replace log(1 + r) with r hereinafter, but we do keep using 
log(1 + r) for computations. We also use small caps to denote the log incomes y = log(Y) and yL = log(YL). 
The contribution of these two factors to total income dispersion can be formally obtained using a vari-
ance decomposition:

Var(y) = Var(yL) + Var(r) + 2 Cov(yL, r). 

Var(r) is the idiosyncratic component that captures variation in capital income that is unrelated to labor 
income; 2 Cov(yL, r) is the labor-correlated component that captures the systematic relationship between  
r and labor income. 
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Variance Components of Total Income (Labor and Capital)

Source: Authors’ calculations based on microdata from the March Annual Social and Economic 
Supplement (ASEC) of the Current Population Survey.  
Note: See the note to Figure 1 for details on the sample. The idiosyncratic component of capital 
income reflects the variation in capital income among individuals with the same labor income. The 
corresponding variance component is computed as the variance of the ratio of capital to labor income. 
The labor-correlated component of capital income captures the extent to which total income inequality is 
magnified by the fact that higher-earning individuals tend to receive a larger share of total income from 
capital sources.  The corresponding variance component is computed as (twice) the covariance between 
log labor income and the ratio of capital to labor income. See text for more detail.
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The Role of Education in Inequality Growth

Rates of returns to education have increased substantially since the late 1970s. 
In their highly influential study, Katz and Murphy (1992) link the sharp growth 
in the college wage premium during the 1980s to a deceleration of the growth in 
the relative supply of college education in an era where the relative demand for 
highly educated workers was increasing. Numerous other studies have shown that 
the returns to education kept increasing after the 1980s (for example, Card and 
Lemieux 2001; Goldin and Katz 2008; Acemoglu and Autor 2011; Autor 2014).  
Fewer studies have sought to quantify the contribution of education to the overall 
growth in income inequality, but those studies suggest that it may have played a 
disproportionately large role in the growth in dispersion of earnings. For instance, 
Lemieux (2006a) and Goldin and Katz (2007) find that at least one-half of the 
growth in earnings dispersion can be connected to growing returns to education. 
The twin goals of this section are to evaluate whether this finding still holds when 
using more recent data and whether education plays an important role in the 
dispersion of both labor and capital income.

The CPS data give us the ability to look at how income varies with respect to 
“groups” defined by education, age, or labor market experience, as well as occupa-
tion or industry, and how income for those groups evolves over time. For any defined 
grouping, we can decompose overall income dispersion into three components: 
(1) between-group inequality, (2) within-group inequality, and (3) composition effects. 
The literature uses these concepts to decompose the change in inequality over 
time. An example of rising between-group inequality is when the income gap between 
high- and low-educated workers widens, which naturally will lead to increases in the 
gap between high- and low-income workers overall. Rising labor market returns to 
education will increase the between-group component of inequality when groups 
are defined by education.

Rising within-group inequality occurs when the gap between high- and low-
income workers widens even for people in the same “group.” For example, there 
is a fair amount of variability in income among workers who have a college degree, 
potentially driven by varying quality of the college education itself. So a growing 
demand for workers from colleges of higher quality could be driven by increases 
in within-group inequality.10 Another possible source for growing within-group 
dispersion among college-educated workers is that the demand for their skills 
may be growing unevenly across space. For instance, Autor (2019) shows that the 
college wage premium has grown much faster in high- relative to low-density urban 
areas.  Autor also shows that this phenomenon is connected to a faster growth in the 

10 See Lemieux (2006a) for a formal exposition of this argument in a context where returns to education 
are heterogenous across individuals. If school quality is the source of heterogenous returns, an increase 
in the demand for effective education skills (both quantity and quality) will lead to an increase in both 
the college–high school gap and in earnings dispersion among college-educated workers.
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demand for high-skill tasks (professional, technical, and managerial occupations) 
in high-density urban areas.

Finally, composition effects arise simply because, if over time, there are more and 
more people in groups that tend to have more within-group dispersion, this by itself 
will increase overall income inequality. For example, over the past several decades, 
there has been a steady shift in the proportion of the workforce from lower to higher 
education levels, which then would tend to lead to more inequality because income 
is more dispersed among highly educated workers (Lemieux 2006b). 

We capture these three potential contributions of education to the growth 
in the variance of log income using a variance decomposition. We illustrate the 
results in Figure 3, again dividing into men and women workers. Groups used for 
the decomposition are formed using five education groups and eight age groups, 
which in this literature are often used as a proxy for the level of job experience. 
Note that in the case of between-group inequality, we compute the contribution 
of both education- and experience-related wage differentials to inequality growth. 
Within-group inequality is broken down into a base component capturing income 
dispersion among individuals with less than a college degree—the “high school” 
group—and the difference in within-group inequality between those with or without 
a college degree. The latter represents the contribution of education to the growth 
in within-group inequality.11 

Figure 3 shows that within-group dispersion (represented by the bars labeled 
“within for HS” and “effect of education on within”) accounts for most of overall 
income dispersion during each time period. The “within for HS” bar represents the 
within-group variance for the high-school group, while the “effect of education on 
within” bar reflects that the within-group variance for college-educated workers is 

11 For a sense of our approach, consider a Mincer-type log income regression where C is a dummy for 
college, δ is the return to college, and u is an error term capturing unmeasured ability and, as discussed 
above, college quality or differences in returns to college across space:

y = δC + u.

Let θ represent the fraction of individuals with a college degree, ​​σ​ C​ 2 ​​ represents the variance of u among 
college-educated individuals, and ​​σ​ H​ 2 ​​ represents the variance of u among high school-educated indi-
viduals. The variance of income can be written as the sum of the between-group component, δ2θ(1 – θ), 
and within-group component, ​θ​σ​ C​ 2 ​ + (1 – θ)​σ​ H​ 2 ​.​ Adding a time subscript and re-arranging terms yields:

​Vart(y) = ​δ​ t​ 
2​ θt(1 – θt) + θt(​σ​ Ct​ 

2 ​ – ​σ​ Ht​ 
2  ​) + ​σ​ Ht​ 

2  ​.​

When looking at changes in the variance from a base period 0 to time t, the contribution of the three 
factors discussed in the text can be obtained as follows. To compute the contribution of composition 
effects, we replace the college share θt by its value in the base period, θ0, which amounts to re-weighting 
college workers using the reweighting factor θ0/θt. For between-group effects, we recompute the equation 
by replacing ​​δ​ t​ 

2​​ with ​​δ​ 0​ 
2​​. For within group effects (excess growth for college relative to high school-

educated individuals), we replace ​​σ​ Ct​ 
2 ​ – ​σ​ Ht​ 

2  ​​ with ​​σ​ C0​ 
2 ​  – ​σ​ H0​ 

2 ​​ . After having done these adjustments, the only 
source of growth left in the variance is the change over time in the within-group variance of high school-
educated individuals ​(​σ​ Ht​ 

2 ​  – ​σ​ H0​ 
2 ​ ),​ which represents the baseline change if education played no role in the 

change in inequality. While in the text we only use two education groups to simplify the exposition, in 
the empirical analysis we use five education groups (high school dropouts, high school graduates, some 
college, college graduates, and college post-graduates). As a proxy for shifts in experience levels, we also 
control for age, using dummies for five-year age categories going from 25–29 to 60–64. 
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larger; this latter component, especially in the earlier time periods like 1975–79, 
is relatively small throughout the entire period. As is well known—for example, 
from Juhn, Murphy, and Pierce (1993)—within-group dispersion grew substantially 

Figure 3 
Sources of Change in the Variance of Log Total Income

Source: Authors’ calculations based on microdata from the March Annual Social and Economic 
Supplement (ASEC) of the Current Population Survey.  
Note: See the note to Figure 1 for details on the sample. The within for HS component is the variance of 
log total income among high-school graduates (individual with less than a college degree). The effect 
of education on within component is the difference between the variance of log income for college 
and high-school graduates. The between: experience component is the between-group variance linked 
to experience-related wage differentials. The between: education component is the between-group 
variance linked to education-related wage differentials. The composition component represents the 
change in the variance of log total income linked to changes in the distribution of education and 
experience relative to the base period (1975–79). 
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during the 1980s, accounting for a substantial share of the growth in the variance of 
income. However, most of the growth in within-group dispersion stopped after the 
1985–89 time period.

By contrast, between-group dispersion (the red and grey bars) grew over the 
entire 1975–2018 period. Almost all of the between-group dispersion at a given 
point in time is linked to education (the red bar) rather than experience (the gray 
bar). The size of this education-related variance component more than doubled: 
for men, from 0.045 in 1975–79 to 0.115 in 2015–18; for women, from 0.038 in 
1975–79 to 0.091 in 2015–18. Figure 3 also indicates that, after 1985–89, this vari-
ance component played a larger role in the growth in income dispersion than did 
the within-group component unrelated to education (baseline within-group disper-
sion for high school-educated workers).

Figure 3 reveals that most of the inequality growth after 1985–89 is 
due to the sum of three variance components linked to education: 1) the 
between-education-group dispersion (the red bar), 2) the growth in within-group 
inequality for college-educated workers over and beyond the growth in the within-
group inequality for high school-educated workers, and 3) finally, particularly 
starting in 2000, composition effects linked to the shift from high school-educated 
to college-educated workers. 

We quantify the role of education in inequality growth by showing the contri-
bution of each variance component in percentage terms in Table 1. For the entire 
1975–79 to 2015–18 period, we show the decomposition both for total income and 
labor income only. The results are very similar, indicating that education makes 
a similar contribution to the growth in total income or labor income only (a 
figure showing the labor income decomposition by five-year intervals is also avail-
able in the online Appendix, available with this article at the JEP website). Table 1 
confirms that most of the growth in income inequality over the 1975–79 to 2015–18 
period—56 percent for both men and women—is connected to education. The 
fraction grows even higher—around 70 percent—when only focusing on changes 
that occur after the late 1980s. Most of the contribution of education is due to 
the between-group component and composition effects, with the effect of educa-
tion on within-group dispersion playing a more minor role. Composition effects 
play a more significant role for women, while the growth in the between-group 
component is larger for men. The former is not surprising since the composition 
of the female workforce has dramatically changed over time, with the fraction of 
women with a college degree increasing from 0.192 in 1975–79 to 0.469 in 2015–18. 
The growth in the educational attainment of men has been more moderate, with 
the fraction of college-educated workers going up from 0.246 in 1975–79 to 0.393 
in 2015–18. Because within-group dispersion is now higher among college than 
high school graduates, the faster growth in college-educated labor among women 
leads to larger composition effects. We also note that while the composition effects 
reported here combine the contribution of education and experience, 80 percent 
of composition effects for men and 87 percent of composition effects for women 
over the 1975–1979 to 2015–2018 period are due to education only.  
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In summary, most of the growth in labor and capital income inequality can be 
linked to education. In particular, increasing returns to education lead to a large 
increase in the between-group component that accounts for around one-third of the 
increase in the variance of income between 1975–79 and 2015–18. Another impor-
tant factor linked to education is that since incomes are more unequally distributed 
among college-educated workers, the growth in the fraction of highly educated 
workers leads to large composition effects, especially among women. The faster 
growth in within-group dispersion among college-educated workers also contrib-
uted, albeit in a more modest way, to the increase in overall income inequality. If 
it had not been for factors directly connected to education and increasing gains to 
education, income inequality would have increased by less than half as much as it 
did over the last four decades.

The Role of Occupation, Industry, and Location 

In this section, we compare the role of education documented above to that 
of occupation, industry, and location in accounting for the level and growth of 

Table 1 
Contribution (in %) of Education and Other Factors to the Growth in the Variance 
of Total Income

Contribution of education

Within 
(HS)

Between: 
experience

Between: 
education

Education 
effect on 
within

Composition 
effects

A. Men
Total income:
1975–79 to 1985–89: 67.8 2.3 28.8 0.9 0.2
1985–89 to 2015–18: 32.2 –2.0 39.6 8.9 21.4
Total change: 44.4 –0.6 35.9 6.2 14.1

Labor income:
Total change: 45.4 –0.9 37.5 6.3 11.7

B. Women
Total income:
1975–79 to 1985–89: 74.6 0.6 26.2 4.3 –5.7
1985–89 to 2015–18: 27.2 0.6 30.1 9.5 32.6
Total change: 42.8 0.6 28.8 7.8 20.0

Labor income:
Total change: 42.1 0.1 30.5 8.3 18.9

Source: Authors’ calculations based on microdata from the March Annual Social and Economic 
Supplement (ASEC) of the Current Population Survey.
Note: See the note to Figure 1 for details on the sample and the note to Figure 3 for an explanation of 
the variance components presented in the table. 
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total income inequality. There is a rich literature looking at how relative changes in 
the demand for labor by industry and occupation have been important factors in 
growing returns to education, and to inequality more generally. A group of papers 
in the early 1990s sought to explain, using skill-biased technical change or related 
concepts, the monotonic relationship between skill level and earnings changes 
that was observed during the 1980s. For instance, Bound and Johnson (1992) and 
Katz and Murphy (1992) use “shift-share” approaches to look at whether the rela-
tive growth in industries employing more educated labor has contributed to the 
growth in the rate of return to education. Other papers such as Krueger (1993) 
and Berman, Bound, and Griliches (1994) argue that the growing returns to educa-
tion were primarily due to skill-biased technical change linked to the computer 
revolution. 

Starting in the 1990s, however, inequality growth became increasingly concen-
trated at the top of the distribution. Furthermore, earnings at the bottom end of 
the distribution stabilized relative to those earnings in the middle, leading to what 
Autor, Katz, and Kearney (2006) famously called the polarization of the earnings 
distribution. This phenomenon is also present in the CPS data used in this paper, 
which shows that for both men and women, the gap between the 90th and the 50th 
percentiles grew steadily since the late 1970s. By contrast, all of the growth in the 
gap between the 50th and the 10th percentiles is concentrated in the 1980s.12

Autor, Katz, and Kearney (2006, building on Autor, Levy, and Murnane 2003) 
conjectured that a more nuanced form of technological change could explain 
the polarization of earnings of the 1990s: specifically, computerization might 
have a particularly negative impact on routine tasks that used to be performed by 
workers in the middle of the income distribution. This insight changed the focus 
of the inequality literature from industries to occupations, as occupations are much 
better proxies for the types of tasks performed by workers of different skill levels. 
Numerous studies have shown that, consistent with the “routine-biased” technical 
change hypothesis, the distribution of employment across occupations has become 
increasingly polarized in the United States and other advanced economies (for 
example, Goos, Manning, and Salomons 2014).

More recently, Autor (2019) introduced an important new dimension to 
employment polarization by showing that the distribution of occupations performed 
by workers of different skill levels has changed substantially across place during 
the last few decades. Autor shows that non-college workers used to disproportion-
ately hold middle-skill jobs—blue-collar production and white-collar office jobs—in 
densely populated urban areas. These non-college urban workers were hit particu-
larly hard by routine-replacing technical change. Autor shows that this changing 
distribution of employment over both occupation and space played an important 
role in inequality growth.

12 For an illustration of this pattern, see Appendix Figure A3 available with this paper at the JEP website. 
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Trade and globalization may also have contributed to the polarization of 
the labor market. For instance, Chetverikov, Larsen, and Palmer (2016) find that 
low‐wage earners were significantly more affected by increased Chinese import 
competition—what Autor, Dorn, and Hanson (2013) called the “China shock”—
than high‐wage earners.

We measure these developments within our variance decomposition frame-
work by first adding variables for occupation, industry, and location. Our objective 
here is to assess how much of the rise in income dispersion can be explained by 
these factors, above and beyond what is already being explained by education. 
This is accomplished by further refining the groups—which were in Figure 3 
limited to education and experience—to reflect additionally occupation, industry, 
and location. We note that this calculation may understate the full contribution 
of changing demand by occupation, industry, and location, because it does not 
capture the part of the contribution that is being mediated through education. 
We also explore how adding these factors changes the magnitude of the composi-
tion effects shown in Figure 3. Like Autor (2019), we use DiNardo, Fortin, and 
Lemieux’s (1996) reweighting method to compute a shift in the composition 
of the labor market compared with the counterfactual income distribution that 
would have prevailed if the distribution of occupation and place had remained 
unchanged since the late 1970s.

Occupations are coded up using the same nine categories as Autor (2019). 
In the case of industries, we classify workers into 12 broad categories based on the 
1990 Standard Industrial Classification harmonized over time. Regarding the spatial 
distribution of workers, we use a classification based on whether individuals live 
in (1) the 15 most populous metropolitan statistical areas, (2) other metropolitan 
statistical areas, or (3) non-urban areas.13 

Figure 4 shows the effect of adding more covariates on the between-group vari-
ance of total income. The focus on the between-group component explains why 
the variances reported in Figure 4 are substantially lower than those reported in 
the previous figures. The baseline (lower blue bar) reproduces the sum of the two 
between-group variance components based on education and age in Figure 3. For 
both men and women, adding occupation, industry, and location appears to explain 
substantially more of the variance in total income at any given point in time. For 
example, in the case of men, adding these factors raises the total between-group 
variance component from about 0.05 to about 0.075 in 1975–79, and from 0.12 to 
0.16 in 2015–18.

As for how these factors contribute to the overall growth in total income 
inequality, Figure 4 shows two patterns. First, the between-group variance compo-
nent linked to industry (the red bar) has been declining over time, and changes 
linked to earnings changes over space are small (as also documented in Autor 
2019), compared to the between-group changes linked to education, for example. 

13 Again, for more details on these variables and full methodology behind the calculations, see the online 
Appendix, available with this paper at the JEP website.
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Figure 4 
Effect of Additional Covariates on the Between-Group Variance

Source: Authors’ calculations based on microdata from the March Annual Social and Economic 
Supplement (ASEC) of the Current Population Survey.  
Note: See the note to Figure 1 for details on the sample. The baseline component represents the 
between-group variance of log total income due to experience- and education-related wage differentials 
only. The occupation component indicates by how much the between-group variance increases when 
occupation-related wage differentials are taken into account by adding occupation dummies to a log 
income regression with a full set of education times experience effects. Likewise, the industry component 
indicates by how much the between-group variance increases when industry dummies are further added 
to the log income regression. Finally, the interaction with MSA component indicates by how much the 
between-group variance increases when a set of MSA dummies and its interaction with occupation, 
industry, and education dummies are added to the log income regression. 
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Second, Figure 4 confirms existing findings that occupation wage differentials have 
been playing an increasingly important role in income inequality growth. Acemoglu 
and Autor (2011) reach a similar conclusion by including occupation dummies in a 
Mincer-type equation. Likewise, Firpo, Fortin, and Lemieux (2011) and Fortin and 
Lemieux (2016) show that either occupation dummies, or characteristics of occupa-
tions summarized by tasks measures, contribute to the growth in the between-group 
variance. 

Table 2 quantifies the extent to which the additional consideration of occupa-
tion and location can account for the growth in total income inequality. For the 
sake of brevity, we only show changes over the whole 1975–79 to 2015–18 period. 
The first row in each panel (A–D) uses only education and age to define the groups, 
while the second row additionally includes occupation and metropolitan statistical 
area so that the difference between the two quantifies the importance of the occu-
pational and locational dimension. The first column reports the overall change 
in inequality, matching the numbers in Figure 2. The second column reports the 
between-group components of variance as illustrated in Figure 4. It shows that for 
both men and women, and for the total income (panels A and B) and labor income 
only measures (panels C and D), occupation and location contribute an extra 0.015 
to 0.020 relative to a base of 0.059 to 0.072 explained by education and age alone. 
The decomposition in Figure 4, with its focus on between-group variance compo-
nents, did not allow for composition effects. So the third and fourth columns use a 
re-weighting approach (as was used to produce Figure 3 to compute the composi-
tion effects components).

Interestingly, the contribution of the between-group component declines when 
we add occupation and metropolitan statistical area but is offset to varying degrees 
by the composition effects. This finding reflects a subtle interaction between the 
composition of the workforce and the magnitude of the effect of different factors 
on income. To the extent that returns to high levels of education and high-paying 
occupations have grown over time, downweighting the importance of these groups 
by holding the occupational distribution fixed at the 1975–79 level dampens the 
contribution to the between-group component to the growth in income inequality.

The additional consideration of occupation and metropolitan statistical 
area seems to make the most difference via composition effects in the case of 
women, for whom the contribution of composition effects to growth in the vari-
ance of total income increases from 0.037 to 0.065. The latter figure represents 
more than one-third of the growth in the overall variance between 1975–79 and 
2015–18. This is consistent with Autor’s (2019) finding that the spatial and occu-
pational polarization of work has played an important role in the secular increase 
in income inequality.

Although occupation and place play an interesting role in the evolution of 
income inequality over time for women, in the case of men, they add only modestly 
to what can already be explained using only education (and experience). The final 
column of Table 2 reports the ratio of the sum of the components in the third and 
fourth columns to the first column. It shows that adding occupation and space does 
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not drastically change how much of the growth in the variance of income (about 50 
percent) can be accounted for by the between-group component and composition 
effects. By contrast, the additional explanatory effect of considering occupations 
plays a more important role for women, raising the percentage from about 50 to 58 
percent. This likely reflects the fact that the distribution of occupations has been 
changing more drastically for women than men over time, with women increasingly 
moving into high-paying managerial and professional occupations that were domi-
nated by men back in the late 1970s.

Evidence for Large European Economies 

Many of the explanations for the growth in income inequality in the United 
States, such as those based on technological change and employment polarization, 
should also apply to other high-income economies. Back in the 1990s, a major chal-
lenge to this view was that inequality had only grown modestly, if at all, in most other 

Table 2 
Change in the Variance of Total Income between 1975–79 and 2015–18: 
Contribution of Between-Group and Composition Effects with Different Set of 
Covariates

No reweighting With reweighting

Total change Between-group Between-group Composition % explained

A. Men, total income
Education*Age 0.1949 0.0720 0.0689 0.0275 49.5
+Occupation*MSA 0.1949 0.0882 0.0627 0.0358 50.5

B. Women, total income
Education*Age 0.1850 0.0647 0.0543 0.0371 49.4
+Occupation*MSA 0.1850 0.0750 0.0414 0.0650 57.5

C. Men, labor income
Education*Age 0.1676 0.0616 0.0614 0.0196 48.3
+Occupation*MSA 0.1676 0.0764 0.0549 0.0274 49.1

D. Women, labor income
Education*Age 0.1659 0.0588 0.0508 0.0314 49.5
+Occupation*MSA 0.1659 0.0681 0.0379 0.0582 57.9

Source: Authors’ calculations based on microdata from the March Annual Social and Economic 
Supplement (ASEC) of the Current Population Survey.
Note: See the note to Figure 1 for details on the sample. The rows labelled Education*Experience indicate 
the change in the between-group variance due to education- and experience-related wage differentials 
only. The rows labelled + Occupation*MSA also consider the contribution of occupations interacted 
with MSA effects. The column Between-Group with reweighting shows the change in the between-group 
variance when the distribution of the explanatory variables (education and experience with and 
without occupation and MSA effects) is held constant at its 1975-79 level. The Composition column 
shows how much of the increase in the variance is due to changes in the explanatory variables.
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advanced economies. For instance, Freeman and Katz (1995) show that, unlike in 
the United States, inequality was relatively stable in most European economies 
and Japan during the 1980s. The only notable exception was the United Kingdom 
where, like in the United States, inequality grew rapidly during the 1980s; indeed, 
Machin (2011) shows that inequality continued to increase steadily over time in the 
United Kingdom, albeit at a faster rate during the 1980s. Freeman and Katz (1995) 
suggest that a combination of differences in national wage-setting institutions and 
supply factors (especially the rate of growth in highly educated labor) could go a 
long way towards explaining these differences. 

However, more recent studies indicate that earnings inequality has been 
increasing in several continental European countries since at least 1990. For 
example, Dustmann, Ludsteck, and Schönberg (2009) use high-quality social secu-
rity data to show that earnings inequality has been steadily growing in Germany 
over the last few decades, thereby revising the findings of a stable earnings distri-
bution from earlier studies that were based on the German Socio-Economic Panel 
(GSOEP) (for example, see Steiner and Wagner 1998). Card, Heining, and Kline 
(2013) and Hoffmann (2019) offer a further analysis of the growth in inequality in 
Germany. For Italy, Manacorda (2004) shows that inequality started growing in the 
late 1980s after a wage indexation mechanism known as the Scala Mobile became 
much less binding. Devicienti, Fanfani, and Maida (2019) show that inequality kept 
growing steadily in Italy after the end of the analysis period considered by Mana-
corda (from 1977 to 1993).

We reexamine these trends using the most recently available data for France, 
Germany, Italy, and the United Kingdom. As in the case of the United States, our 
focus is on documenting trends for both labor and total income. This presents an 
empirical challenge because none of these four large European countries collect 
annual data providing the detailed information about income and individual 
characteristics that is contained in the US March CPS.14 In an effort to maximize 
comparability with the US results, we rely on the Household Budget Survey for 
France, the Survey of Household Income and Wealth (SHIW) for Italy, the Family 
Resources Survey (FRS) for the United Kingdom, and the Income and Expenditure  
Survey (EVS: Einkommens- und Verbrauchsstichprobe) for Germany. 

In the case of French, Italian, and UK data, we use the harmonized version of 
these data provided by the Luxembourg Income Study (LIS 2020) project. However, 
since the Luxembourg Income Study relies on the GSOEP for Germany, which 
seems to miss (as discussed above) some of the inequality trends found in high-
quality administrative data, we use the EVS data (the Sample Survey of Income and 
Consumption) provided by the German Statistical Office instead. The EVS data are 

14 Numerous studies of European economies have used rich longitudinal social security data sets to 
look at labor market inequality, including Dustmann, Ludsteck, and Schönberg (2009); Card, Heining, 
and Kline (2013); and Hoffmann (2019) for Germany, and Devicienti, Fanfani, and Maida (2019) and 
Daruich, Di Addario, and Saggio (2020) for Italy. However, these data sets don’t provide information 
on non-labor income and on workers who are not covered by social security (self-employed and public 
sector workers in Germany).
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collected administratively, and among other uses, they determine the consumption 
basket for the calculation of the official consumer price index and for calculating 
the income thresholds of unemployment and social insurance. Germany’s Federal 
Statistical Office explicitly highlights its high accuracy. Indeed, Dustmann, Fitzen-
berger, and Zimmermann (2018), in a study of the evolution of inequality at the 
household level, find that inequality trends in the EVS track closely those docu-
mented in administrative social security data.15 Two major advantages of the EVS 
relative to administrative social security data are that they report capital income and 
that their top-code is high. 

We provide more information on these data sets and discuss their limitations 
relative to the US CPS in the online Appendix, available with this article at the JEP 
website. Two important differences of the European data sets worth mentioning 
here are: (1) capital income is only collected at the household level, not the indi-
vidual level; and (2) in the European data sets, full-time status is more frequently 
available than information about weeks of work and full-year status. We adjust for 
the first issue by dividing household capital income by the number of individuals 
age 25–64 in the household. We address the second issue by only keeping years 
where full-time status is available.16 Also, to mimic our sample restriction in the US 
data of keeping only full-time/full-year workers earning more than $4 per hour, we 
remove all observations with annual earnings below $8,000 ($4 times 2,000 hours a 
year) in 2018 terms from our European data.

Figure 5 shows the evolution of the standard deviation of log total income in 
European countries and in the United States. We show the trends starting in 1989, 
the first year for which European data are available. For the sake of comparability, 
we use the full-time/over $8,000 sample criterion in US data, too, instead of the full-
time/full-year criterion used in prior tables and figures. Comparing Figures 1 and 5 
indicates that the US standard deviation grows somewhat more slowly when using the 
full-time/over $8,000 criterion instead of full-time/full-year, though the overall trends 
remain similar. For example, in the case of men, the standard deviation increases by 
0.083 between 1989 and 2018 in Figure 1, panel A, compared to 0.050 in Figure 5, 
panel A. 

Figure 5 shows that, for both men (Figure 5, panel A) and women (Figure 
5, panel B), income inequality has increased in all countries but France since the 
1990s. While we are unable to analyze data from France after 2005, other studies 
using slightly different samples and income concepts have generally found that 
inequality has remained fairly stable in France since 2005; for example, Boiron 
(2016) uses the French Household Budget Survey data to study the evolution of 
income inequality without imposing the full-time/over $8,000 restrictions and has 

15 More details on the strengths and weaknesses of the different German data sets is provided in the 
online Appendix, available with this paper at the JEP website. Also, we discuss in more detail some new 
insights on the evolution of inequality in Germany in Appendix B.
16 Unfortunately, we have to drop the most recent observation (2010) for France and pre-1998 observa-
tions for Germany because of the lack of information about full-time status in those years.
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access to a wider time period than what is available in the Luxembourg Income 
Study data. He finds that both the Gini coefficient and the 90/10 ratio as measures 
of income inequality have been essentially unchanged in France between 2005 and 
2013. Thus, France appears to be increasingly an outlier relative to the three other 
large European economies where inequality has increased rapidly over the last 
few decades. And although the level of inequality remains higher in the United 
States, the inequality gap relative to Germany, Italy, and the United Kingdom has 
declined in recent decades as inequality has grown slightly faster in these three 
countries than in the United States.

Unlike in the United States, the evolution of total income inequality in Europe 
is almost entirely driven by changes in the distribution of labor income, and capital 
income plays a very small role. Indeed, the difference between the variance of 
total and labor income is an order of magnitude smaller in all European coun-
tries than in the United States.17 With respect to the role of capital income in the 

17 For calculations, see online Appendix Table A2, available with this paper at the JEP website. We 
don’t separately show the evolution of labor and total income in Figure 5 to avoid overloading the 
graphs, but online Appendix Table A3 shows that even when no adjustment is used to reconcile capital 
income as reported in the March CPS with measures of capital income from the national income and 
product accounts, capital income still plays a more important role in the United States than in European 
countries. 
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Figure 5 
Standard Deviation of Log Total Income in European Countries

Source: Authors’ calculations based on microdata from the March CPS for the United States, the 
Household Budget Survey for France, the Survey of Household Income and Wealth for Italy, the Family 
Resources Survey for the United Kingdom, and the Income and Expenditure Survey for Germany.
Note: The standard deviations are computed for a sample of full-time workers age 25-64 with annual 
earnings of at least $8000 in 2018 dollars (adjusted for exchanges rates in the case of European countries). 
Total income is the sum of labor (net self-employment and wage and salary income) and capital income 
(interest income, dividends, and rents). The top 1 percent of the distribution (top 1.5% in Germany 
for reasons explained in the online Appendix) has been trimmed because of inconsistencies in the way 
earnings at the very top have been collected over time in the United States. See text for more detail.
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rise of earnings inequality, Europe keeps looking much like the United States in 
the 1980s and 1990s when inequality growth in total income was almost entirely 
driven by changes in labor income inequality. This suggests a possibility that the 
contribution of capital income to inequality in Europe may grow in the years to 
come if high earners—who relatively benefit from the growth in labor income 
inequality—start accumulating relatively more wealth and receive more capital 
income down the road.

Another interesting difference between European countries and the United 
States is that education does not play quite as large a role in inequality growth on 
the other side of the Atlantic. This is shown in Table 3, which repeats the decom-
position reported in Table 1 for all five countries. For France, the percentage 
changes  are difficult to interpret because they are normalized relative to a modest 
change, especially in the case of women. In the three other European countries, 
the between-group component linked to changes in returns to education is 
smaller than in the United States, and is even negative in the United Kingdom. 
This finding is consistent with Blundell, Green, and Jin (2016), who find that 
the returns to education did not change much in the United Kingdom in recent 
years. As in the United States during the 1980s and 1990s, the most important 

Table 3 
Contribution (in %) of Education and Other Factors to the Growth in the Variance 
of Total Income

Contribution of education

Within 
(HS)

Between: 
experience

Between: 
education

Ed. effect 
on within

Composition 
effects

Total change 
(by decade)

A. Men
US: 1985–89 to 2015–18 32.2 –2.0 39.6 8.9 21.4 0.043
France: 1994 to 2005 13.7 –26.0 171.6 40.0 –99.2 –0.011
Italy: 1989 to 2016 54.3 5.1 7.0 4.8 28.7 0.057
Germany: 1998 to 2013 49.8 –0.9 15.7 11.2 24.2 0.060
UK: 1999 to 2016 47.3 –2.5 –12.6 18.7 49.1 0.048

B. Women
US: 1985–89 to 2015–18 27.2 0.6 30.1 9.5 32.6 0.041
France: 1994 to 2005 373.0 –101.3 324.6 163.3 –659.6 –0.002
Italy: 1989 to 2016 46.0 3.8 9.6 12.3 28.2 0.040
Germany: 1998 to 2013 22.8 5.7 19.2 24.2 28.1 0.039
UK: 1999 to 2016 49.3 –5.8 –51.2 35.1 72.5 0.025

Source: Authors’ calculations based on microdata from the March CPS for the United States, the 
Household Budget Survey for France, the Survey of Household Income and Wealth for Italy, the Family 
Resources Survey for the United Kingdom, and the Income and Expenditure Survey for Germany.
Note: See the note to Figure 5 for details on the European samples and the note to Table 1 for an 
explanation of the variance components presented in the table. In the case of the United States, we 
simply reproduce the figures reported in Table 1 for the 1985–89 to 2010–18 period. The column Total 
change (by decade) reports the annualized change in the variance multiplied by 10. Since countries are 
observed over different time frames, the transformation is used to make the changes in the variance 
comparable across countries.
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component of inequality growth in the three European countries besides France 
is the within-group component among high-school graduates—that is, the 
“residual” component unlinked to experience and education factors. Composi-
tion effects are also quite large in European countries, reflecting the fact that 
the workers have grown older and more educated in these countries. Germany 
is, to some extent, an outlier relative to the other European countries. In partic-
ular, education has played a substantial role in the rise of earnings inequality. 
The within- and between-group components combined explain approximately 
27 percent of the increase in income inequality over the German sample period, 
compared to 12 percent for Italy and 6 percent for the United Kingdom. Impor-
tantly, the returns to education have increased substantially, accounting for almost 
16 percent of the rise in income inequality. In terms of the role that education 
plays in the evolution of the earnings distribution, Germany thus lies somewhere 
between the “average” European country and the United States. 

A few key messages arise from the comparison of inequality changes in 
Europe and the United States. First, the sharp US-European divide in whether 
income inequality is rising at all, documented by Freeman and Katz (1995), no 
longer holds in recent data, as inequality in three of the four large European 
economies has been partly catching up to the higher US level of inequality. 
Second, and unlike in the United States, capital income is not a significant part 
of the inequality story in Europe—or at least not yet. This is true without reser-
vation for all four European countries we consider in our analysis. Third, with 
the slight exception of Germany, education doesn’t play as much of a role in 
inequality growth in Europe, perhaps because the supply of highly educated 
workers has grown faster in these countries. For example, Blundell, Green, and 
Jin (2016) discuss this point in the context of the United Kingdom. On the other 
hand, Germany, as with other trends in labor market outcomes, is becoming 
more and more the European country that resembles the US experience the 
most.

Concluding Comments

In an examination of income inequality trends in the United States, the consid-
eration of capital income further accentuates the main story of growing income 
inequality, as the capital-to-labor income ratio disproportionately increased among 
high-earning individuals. However, the magnitude of the capital income compo-
nent is relatively small compared to the predominant source of rising total income 
inequality, which is labor earnings inequality. Furthermore, various aspects of 
education—both the gaps between groups defined by education and the growing 
fraction of highly educated workers—appear to be the predominant force behind 
the growth in both labor and capital income inequality in the United States, with 
some role for occupation premia and composition effects linked to the polarization 
of employment across occupations and space.
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Findings for large European economies are more nuanced. While inequality 
in Germany, Italy, and the United Kingdom grew at least as fast as in the United 
States in recent years, it remained stable in France. Furthermore, the nature of 
inequality changes—in particular, the role of capital income and education—was 
quite different in Europe than in the United States. The modest contribution of 
capital income to inequality growth in Europe may reflect the fact that US inequality 
started growing earlier, and has gradually led to an increase in wealth and capital 
income inequality. Better understanding the nature of the differences in inequality 
growth in the United States and Europe should be an important priority for future 
research. 

Overall, although the same global forces towards increased inequality appear 
to be at play in both the United States and Europe, the role of capital income and 
education in rising inequality remains quite different across countries. Furthermore, 
the fact that inequality has remained stable in France suggests that country-specific 
factors can still mitigate other forces pushing toward greater inequality. A detailed 
investigation of the role of supply, demand, and institutional factors remains essen-
tial for understanding similarities and differences in the inequality changes in 
different countries.

■ We are grateful to Victoria Angelova and Myera Rashid for expert research assistance, 
and to Melanie Heiliger for assisting us with the German EVS data, including running and 
testing our codes.
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